多模态如今是越来越火了,与之相关的研究方向在各大顶会基本都成了投稿热门,趁着这波风向,我也给想发论文但找不着idea的同学推荐一个创新思路:迁移学习+多模态融合。
这种结合可以轻松搞定提高性能这一核心问题,通过将源领域学习到的多模态知识迁移到目标领域,就可以快速适应目标领域的任务需求。
不仅如此,这种在不同模态之间实现更有效知识传递和信息融合的能力,也能提高模型在新任务上的准确率。比如胸部X光模型MultiFusionNet,在两类分类中取得了99.6%的高准确率。
为了让大家更好的掌握这个创新思路,然后运用到自己的文章中,今天我就来分享10种迁移学习+多模态融合创新方法,都是今年最新,代码基本都有。
论文原文+开源代码需要的同学看文末
MultiFusionNet: multilayer multimodal fusion of deep neural networks for chest X-ray image classification
方法:论文提出了一种结合了迁移学习和多模态融合的方法,用于胸部X光图像分类。该方法强调从不同层次提取特征并将它们融合,考虑了每一层捕获的区分性信息,并提出了一种不同尺寸特征图融合模块,以有效地合并来自不同层的特征图。MultiFusionNet在三类和两类分类中分别取得了97.21%和99.60%的显著较高准确率。