2025发论文&模型涨点之——迁移学习+多模态融合
当迁移学习和多模态融合相结合时,主要是利用迁移学习的优势来提升多模态融合模型的性能,或者利用多模态数据进行更有效的迁移学习。例如,在一个既有图像又有文本的多模态情感分析任务中,可以先在一个大规模的单模态(如图像情感分类或文本情感分类)任务上进行训练,获取相关知识,然后将这些知识迁移到多模态情感分析任务中。
这种结合方式可以有效利用已有的单模态知识来更好地处理多模态数据。
小编整理了一些迁移学习+多模态融合论文合集,以下放出部分,全论文PDF版文末领
论文精选
论文精选
论文1:
A Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis
用于多模态皮肤病变分析的新型迁移学习框架
方法
-
模型融合:提出了一个结合视觉变换器(Vision Transformer)模型、迁移学习、通道注意力机制和感兴趣区域(ROI)的创新框架,用于准确检测包括皮肤癌在内的皮肤状况。
-
数据集使用:利用包含宏观皮肤镜图像和患者元数据的综合数据集,与传统技术相比,所提出的方法在多个参数上显示出显著改进,包括敏感性、特异性和精确性。
-
模型训练:通过迁移学习对模型进行微调,以提高小样本数据集上的性能。
-
性能评估:通过精确度、召回率、F1分数和准确率等指标评估ViT方法,并与SVM、KNN、MobileNet、ResNet152v2和VGG-16等传统技术进行比较。