多尺度特征提取这么做绝绝子!最新idea登顶Nature和Cell!

在CV领域,多尺度特征提取一直是个核心且关键的问题,也是顶会顶刊上的研究热点。最近已经在Nature子刊和cell子刊上发现不少优秀成果...

这是因为,对比传统单尺度,多尺度特征提取可以全面捕捉图像细节与整体特征,增强上下文信息并解决尺度问题,从而显著提高模型的准确性和鲁棒性。这对目标检测、图像分类、图像分割等任务至关重要。

目前,为了更高的计算效率和精度、更强的特征表示能力,我们对多尺度特征提取的创新围绕引入注意力机制、残差连接和可变形卷积等方向。比如一种基于多尺度特征提取的残差网络,计算速度超越SOTA近3倍!

为方便感兴趣的论文er,我这次整理了11篇多尺度特征提取最新论文,开源代码已附,大家需要参考的可以直接拿来看~

全部论文+开源代码需要的同学看文末

A residual multi-scale feature extraction network with hybrid loss for low-dose computed tomography image denoising

方法:文章讨论的是一种基于多尺度特征提取的残差网络,用于低剂量计算机断层扫描图像去噪。作者提出了一种结合了多尺度特征提取和混合损失函数的网络结构,计算速度超越SOTA近3倍,并在保持结构和抑制噪声方面取得了更好的去噪性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值