端到端聚类成顶刊新宠!新作训练速度超Transformer百倍

分享个高区热点:端到端聚类。一区二区都有不少新成果,比如IJCV 2024的IDDC方法,性能优于所有现有无监督语义分割方法,还有LoSTer算法,训练速度比Transformer快数百倍!

这方向已经成为了学术界与工业界的研究重点,因为它能自动化完成从数据输入到聚类结果输出的整个过程,无需人工干预中间步骤,极具高效性与灵活性,在机器学习与数据挖掘领域,尤其是无监督学习和复杂数据建模中,拥有超级强大的潜力。

如今,大模型的进步推动着端到端聚类在更多领域实现“从数据到知识”的无缝衔接,未来关于它的创新将集中在跨模态融合、算法鲁棒性提升、自动化系统开发、伦理安全设计等方面。

本文整理了11篇端到端聚类的前沿论文,开源代码有,需要参考的论文er可无偿获取,也欢迎大家评论区友好交流呀~

全部论文+开源代码需要的同学看文末

End-to-End Supervised Hierarchical Graph Clustering for Speaker Diarization(二区)

方法:论文提出了一种名为E-SHARC的端到端有监督分层图神经网络聚类算法,通过最小化同一说话者的距离和最大化不同说话者的距离,实现了说话者分割任务,并扩展到重叠说话者预测,在挑战性数据集上表现出色。

创新点:

  • 提出了一种基于图神经网络 (GNN) 的端到端监督层次聚类算法,称为 E-SHARC。通过联合优化嵌入提取器和 GNN 聚类模块,实现了表示学习、度量学习和聚类的端到端优化。

  • E-SHARC 方法进一步扩展了模型能力,使其可以预测和分配重叠语音区域的多个说话人。

  • 通过将图神经网络应用于说话人分离任务,该研究首次探索了层次图聚类框架的使用。

Incomplete contrastive multi-view clustering with high-confidence guiding(AAAI 2024)

方法:该论文提出了一种新颖的端到端不完整多视图聚类方法ICMVC,通过多视图一致性关系转移和图卷积网络处理缺失值,同时设计实例级注意力模块和高置信度指导以利用互补信息,解决了多视图数据丢失问题并改进了聚类性能。

创新点:

  • 提出了一种结合多视图一致性关系传递和图卷积网络(GCN)的策略来处理多视图数据中的缺失值问题。

  • 通过设计实例级注意力融合机制和高置信度引导方法,作者能够充分挖掘多视图数据中的互补信息。

  • 提出了一种端到端的框架,将多视图缺失数据处理、多视图表示学习和聚类分配整合为一个联合优化过程。

Concrete Dense Network for Long-Sequence Time Series Clustering

方法:论文提出了一种端到端的聚类方法LoSTer,专门用于长序列时间序列聚类,采用对比学习和优化策略提升聚类性能,在训练速度上比RNN快3个数量级,比Transformer快数百倍,并在多个数据集上展示了卓越的聚类准确性和效率。

创新点:

  • 提出了一种双重对比学习方法,该方法在实例和聚类层次上捕捉描述性模式,将原始视图和增强视图的信息桥接在一起。

  • LoSTer是一种新颖的深度学习方法,专为长序列时间序列聚类(LSTC)设计。

  • 提出了一种集群分布学习方法,能够直接优化k-means目标的硬聚类分配,使端到端的梯度学习成为可能,而无需像现有工作那样采用软k-means放松。

Imbalance-Aware Discriminative Clustering for Unsupervised Semantic Segmentation(一区)

方法:论文提出了一种新的无监督语义分割方法,称为不平衡感知稠密判别聚类(IDDC),通过在ViT的嵌入空间中转移像素流形结构到标签空间,并利用魏布尔函数正则化来处理像素类别不平衡和簇退化问题,实现了像素级特征表示和聚类的端到端、自动化学习,显著优于现有方法。

创新点:

  • IDDC在端到端和自监督的框架下学习像素级特征表示和密集判别聚类,通过转移ViT嵌入空间中的像素流形结构到标签空间,实现更高效的学习。

  • 引入了基于Weibull函数的新正则化器,专门用于解决像素类别不平衡和聚类退化问题。

  • 设计了一种新颖的目标函数,通过使用线性和指数函数来处理像素亲和度中的噪声。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“端到端聚类”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值