聊一个医学图像分割领域的热点:Transformer+UNet。其实不仅仅是这领域,这种技术在需要处理大尺度图像、长程依赖、多模态数据的任务中都很关键,源于其结合了UNet的多尺度特征提取能力和Transformer的全局建模能力,因此应用场景相当广泛。
对应的,近年关于Transformer+UNet的研究越来越火热,论文数量持续增长(如CSWin-UNet、GS-TransUNet、TSUBF-Net等),可参考的优秀成果相当多。不过目前这方向在计算效率、多模态融合、轻量化设计、特定场景下的优化等方面依然还有改进空间,值得我们深入挖掘。
这边推荐对这方向感兴趣的论文er关注实时轻量化模型、多模态推理、不确定性建模等高潜力创新思路,还有与前沿技术的结合,需要参考的可无偿获取我整理好的Transformer+UNet15篇新论文(有代码),觉得有用记得点个赞支持一下~
全部论文+开源代码需要的同学看文末
GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis
方法:论文提出了一种名为GS-TransUNet的方法,将Transformer和UNet结合,通过2D高斯溅射技术生成精确分割掩码,同时实现皮肤病变的分类和分割任务,提升了诊断精度。

创新点:
-
GS-TransUNet首次将2D高斯点渲染技术与Transformer UNet架构相结合,用于皮肤癌的分类和分割。
-
提出了一种统一的端到端双任务学习框架,将分类和分割任务紧密结合,通过任务间一致性和掩膜生成的可靠性增强任务相互依赖性。

Cross‐shaped windows transformer with self‐supervised pretraining for clinically significant prostate cancer detection in bi‐parametric MRI
方法:论文提出了一种基于Transformer和UNet的新型模型CSwin UNet,用于检测前列腺癌。它结合了CSwin Transformer编码器和CNN解码器,通过自监督学习和多任务损失函数进行预训练,显著提升了检测性能和模型泛化能力,优于现有的CNN和Transformer方法。

创新点:
-
提出CSwin UNet模型,结合Transformer和CNN,增强检测能力。
-
利用自监督学习和多任务损失函数,提升模型在少量标注数据下的性能。
-
在大规模数据集上验证,性能优于现有方法,且在外部数据上表现良好。

TSUBF-Net: Trans-spatial UNet-like network with Bi-direction fusion for segmentation of adenoid hypertrophy in CT
方法:论文提出了一种基于Transformer和UNet的3D医学图像分割框架TSUBF-Net,用于CT扫描中腺样体肥大的分割。该框架通过TSP模块增强空间特征感知,并通过BSCF模块融合上下采样特征,同时引入Sobel损失项优化分割结果的平滑度,显著提升了分割精度和平滑性。

创新点:
-
提出TSP模块,增强3D空间特征感知,捕捉腺样体肥大区域的模糊边界。
-
设计BSCF模块,融合上下采样特征,提升分割精度。
-
引入Sobel损失项,优化分割结果的平滑度。

AgileFormer: spatially agile transformer UNet for medical image segmentation
方法:论文提出了一种名为AgileFormer的医学图像分割模型,它是基于Transformer和UNet架构的结合,通过可变形的动态组件捕捉不同形状和大小的器官特征,分割效果更好。

创新点:
-
提出可变形的Patch嵌入,替代传统的固定大小Patch嵌入,更好地适应不同形状和大小的目标物体。
-
设计空间动态多头注意力机制,交替使用可变形注意力和邻域注意力,增强对目标物体的空间动态特征捕捉能力。
-
引入多尺度可变形位置编码,针对不规则采样网格进行编码,进一步提升模型对多尺度目标的分割性能。

关注下方《学姐带你玩AI》🚀🚀🚀
回复“222”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏

2694

被折叠的 条评论
为什么被折叠?



