“具身智能”顶会大爆发!李飞飞新作获最佳论文,这思路我吹爆!

具身智能今年是越来越火了,李飞飞团队的成果一个接一个,上回还是荣获CoRL-LEAP研讨会最佳论文奖的ReKep,这个月月初又发布了𝗕𝗥𝗦,一个解决机器人在家庭任务中全身操作问题的综合框架,500美元就能让机器人帮你干一切家务!

另外还有许多成果成功登上各大顶会,足见具身智能学术关注度之高!加上之前看过的麦肯锡预测,到了2030年,全球具身智能市场规模可能达到数十万亿元,产业应用潜力巨大!入局不亏。

那么问题来了,未来我们该向何处发力?鉴于具身智能泛化性等核心问题尚未解决,建议考虑跨学科融合、底层技术革新等方向。我还整理了10篇具身智能2025新论文(附代码),又打包了20篇相关顶会论文和40+数据集,方便需要参考的科研er了解前沿,加快进度。

全部论文+开源代码需要的同学看文末

BEHAVIOR Robot Suite: Streamlining Real-World Whole-Body Manipulation for Everyday Household Activities

方法:论文提出了一个名为BRS的框架,用于机器人在家庭环境中完成全身操作任务。它通过具身智能的方法,结合低成本遥操作接口JoyLo和全身视动模仿学习算法WB-VIMA,利用机器人的身体结构和与环境的交互能力,高效采集数据并精准建模,从而提升机器人在复杂家庭环境中的操作性能。

创新点:

  • 提出了一种低成本、通用的全身遥操作接口 JoyLo,用于数据采集。

  • 开发了一种新颖的算法 WB-VIMA,用于学习协调的全身控制策略,特别适用于多关节机器人(如双足或双臂机器人)。

  • 基于 BEHAVIOR-1K 基准,明确提出三大关键能力:双臂协调、稳定精准导航及广泛末端执行器可达性,并通过硬件设计实现支持。

ReKep: Spatio-Temporal Reasoning of Relational Keypoint Constraints for Robotic Manipulation

方法:论文提出了一种名为ReKep的方法,用于机器人操作任务。它通过定义关键点之间的关系来生成操作约束,并利用视觉模型和视觉语言模型自动生成这些约束。该方法结合实时感知和优化求解,实现了机器人在复杂环境中的多阶段、双臂协作和反应性操作,展示了具身智能在多样化任务中的高效性和灵活性。

创新点:

  • 提出一种基于语义关键点(ReKep)的结构化约束表示方法,将场景中的关键点映射到数值成本函数,自动编码机器人与环境之间的关系。

  • 构建了一个分层优化框架,用于实时解决机器人动作(即6-DoF或12-DoF末端执行器轨迹)。

  • 开创性地利用视觉提示生成代码,其中代码包含关键点之间的任意算术关系,能够灵活指定复杂几何结构。

Generative Diffusion-Based Contract Design for Efficient AI Twin Migration in Vehicular Embodied AI Networks

方法:论文提出了一种基于生成扩散模型的合同设计方法,用于优化具身智能网络中具身智能双胞胎的迁移效率。通过结合前景理论来模拟自动驾驶车辆在不确定环境下的行为偏好,并利用GDM算法优化合同设计,提高具身智能双胞胎在路边单元之间的迁移效率。

创新点:

  • 首次定义了具身智能代理的数字模型及其AI组件,用于在虚拟环境中执行任务以支持自动驾驶车辆中的智能应用。

  • 设计了一个多维合同模型,并引入前景理论来更准确地衡量自动驾驶车辆在不确定环境下的主观效用。

  • 采用生成扩散模型算法来优化合同设计,有效解决了高维度和复杂性问题。

CityEQA: A Hierarchical LLM Agent on Embodied Question Answering Benchmark in City Space

方法:论文提出CityEQA,一个在城市空间中通过具身智能代理主动探索回答问题的新任务,并构建了CityEQA-EC数据集。同时,设计了PMA代理模型,通过分层规划、管理和执行任务,实现了60.7%的人类水平回答准确率,显著优于传统方法。

创新点:

  • 提出 CityEQA-EC,这是首个针对城市空间的开放式问题回答基准数据集,包含1,412个人工标注的任务,涵盖六种任务类别。

  • 开发了创新的PMA模型,通过分层规划和模块化执行有效解决了城市EQA任务的复杂性。

  • 在探索与信息收集模块中首次引入MM-LLM,以增强视觉分析和开放式回答能力。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

李飞飞教授在具身智能(Embodied Intelligence)领域进行了多项前沿研究,并取得了重要成果。具身智能指的是将人工智能与物理实体(如机器人)结合,使其能够在真实环境中感知、决策和行动,从而实现对复杂任务的自主完成。 在这一领域的研究中,李飞飞团队开发了一款具备双臂、移动底座和灵活躯干的机器人平台,这种精心设计的硬件结构是实现全身操作的关键[^3]。该平台旨在应对真实家庭环境中的各种挑战性任务,例如日常家务操作等[^5]。 为了克服这类复杂机器人系统在策略学习方面所面临的难题,尤其是数据采集规模化以及全身协调动作的问题,研究团队推出了 BEHAVIOR Robot Suite(简称 BRS)。这个框架致力于通过全身操作技术来解决各类实际应用场景下的移动操作问题,被认为是机器人学习领域中的“圣杯”级挑战之一[^5]。 此外,在推动具身智能发展的过程中,BRS 提出了两项关键性的创新技术。这些技术创新不仅解决了机器人硬件层面的设计难题,也有效提升了算法层面的学习效率,使得机器人能够更好地适应多样化的任务需求并进行高效训练和部署。 ```python # 示例代码:模拟一个简单的基于行为套件的任务执行逻辑 class BehaviorRobotSuite: def __init__(self): self.tasks = ["pick_up_object", "navigate_room", "open_door"] def execute_task(self, task_name): if task_name == "pick_up_object": print("Executing pick up object task...") elif task_name == "navigate_room": print("Navigating through the room...") elif task_name == "open_door": print("Opening door...") else: print("Unknown task") # 创建BRS实例并运行任务 brs = BehaviorRobotSuite() for task in brs.tasks: brs.execute_task(task) ``` 上述示例虽然简化了实际情况,但展示了如何构建一个基本的行为套件模型来处理不同的机器人任务。这反映了李飞飞团队在具身智能领域内对于任务规划和技术实现上的深入探索。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值