(CVPR 2025)卷积网络复活!港大最新改进版CNN涨点起飞!

有人说现在研究CNN已经没啥意义了?不如先看看今年CVPR'25上超多的CNN成果。这其中,港大最近重磅推出了新型纯CNN架构OverLoCK,性能连超传统CNN、Transformer与Mamba!实力证明CNN依然是2025年发文的热门选择。

而且,CNN在图像、视频等领域仍然是主流,我们在轻量化和结构创新上的改进也在持续推进CNN的效率与性能,现在的CNN在一些新兴的应用场景(比如元宇宙)中也有了进一步拓展,工业需求持续走高。

因此,对CNN感兴趣或有需求的同学不要犹豫,抓紧时间搞创新。目前围绕CNN的创新主要有模型结构优化和跨技术结合(比如LSTM),其中结合小波变换相当火。我这边整理了56篇CNN前沿论文,包含以上主流思路,基本都有代码,需要参考的自取~

全部论文+开源代码需要的同学看文末

CNN自身改进

OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels

方法:论文提出了一种名为OverLoCK的新型CNN架构,通过模仿人类视觉的“概览-细看”机制,引入三个子网络协同工作,并设计了上下文混合动态卷积,有效建模长距离依赖关系,同时保留局部归纳偏差,显著提升了CNN的性能和效率。

创新点:

  • 提出OverLoCK架构,包含Base-Net、Overview-Net和Focus-Net三个子网络,模拟人类视觉的“概览-细看”机制。

  • 设计ContMix动态卷积,能够建模长距离依赖,同时保留局部特征。

  • 在图像分类、目标检测和语义分割任务上显著提升性能,且计算效率更高。

+小波变换

WeConvene: Learned Image Compression with Wavelet-Domain Convolution and Entropy Model

方法:论文提出了一种基于CNN和小波变换的学习型图像压缩方法。通过在卷积层和熵编码中引入小波变换,减少了频率域冗余,显著提升了压缩性能,超越了现有方法和H.266/VVC标准。

创新点:

  • 提出 WeConv 模块,将小波变换嵌入 CNN 卷积层,减少频率域冗余,提高信号稀疏性。

  • 设计 WeChARM 模块,在熵编码中先编码低频小波系数,再编码高频系数,提升编码效率。

  • 结合 WeConv 和 WeChARM 的框架在压缩性能上超越了现有方法和 H.266/VVC 标准。

+LSTM

Estimation of Muscle Forces of Lower Limbs Based on CNN–LSTMNeuralNetworkandWearable Sensor System

方法:论文提出了一种基于CNN-LSTM神经网络的下肢肌肉力量估计方法。通过可穿戴传感器收集步行时的关节角度和角速度数据,输入CNN-LSTM模型进行肌肉力量估计,表现出较高的估计精度和鲁棒性。

创新点:

  • 提出基于CNN-LSTM的肌肉力量估计新方法,结合CNN特征提取和LSTM时间序列处理能力。

  • 开发可穿戴传感器系统,用于采集步行时的关节数据,方便获取输入数据。

  • 实验验证该方法在不同步行速度下表现良好,具有较高的准确性和泛化能力。

+Transformer

BRAU-Net++:U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation

方法:本文提出了一种新型的BRAU-Net++网络,结合了CNN和Transformer的优点,用于医学图像分割。它通过双层路由注意力机制有效捕捉长程依赖,同时利用通道-空间注意力优化跳跃连接,减少空间信息丢失。

创新点:

  • 提出BRAU-Net++,结合CNN和Transformer,采用双层路由注意力机制,有效学习全局语义信息并降低计算复杂度。

  • 重新设计跳跃连接,加入通道-空间注意力,减少空间信息丢失,增强多尺度特征交互。

  • 在多个医学图像数据集上验证,性能优于现有方法,表现出良好的泛化能力。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“222”获取全部方案+开源代码

码字不易,欢迎大家点赞评论收藏

这个错误通常是由于尝试将一个非标量的数组转换为标量索引引起的。请检查你的代码,确认是否有一个数组被错误地用作索引,或者索引的类型不正确。你可以尝试使用整数索引来访问数组中的元素,或者使用其他适当的索引方式。如果你使用了数组作为索引,你可以尝试使用`np.ravel`或`np.flatten`函数将其展平为一维数组。 在你的代码中,`Month_Observation_Day==1`返回的是一个布尔数组,而`knockout_day`和`knockout_mday_overlock`都是数组。因此,当你尝试将布尔数组用作`knockout_day`的索引时,会出现上述错误。你可以使用`np.where`函数或者布尔索引来实现这个要求。下面是一个使用布尔索引的例子: ```python import numpy as np # 假设 knockout_day 和 Month_Observation_Day 都是一维数组 knockout_day = np.array([10, 20, 30, 40, 50]) Month_Observation_Day = np.array([1, 0, 1, 1, 0]) # 使用布尔索引生成新数组 knockout_mday_overlock knockout_mday_overlock = knockout_day[Month_Observation_Day == 1] print(knockout_mday_overlock) ``` 输出结果为: ``` [10 30 40] ``` 在上面的代码中,`knockout_day[Month_Observation_Day == 1]` 的意思是,使用布尔索引`Month_Observation_Day == 1`,生成一个布尔数组,表示对应位置上 Month_Observation_Day 中的值是否为 1。然后将布尔数组作为索引,从 knockout_day 数组中取出对应位置上的值,生成新的数组 knockout_mday_overlock
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值