数字图像处理复习(part1)
之前看学长大四发了学习笔记,看着复习挺方便的,我也试试吧。初次在CSDN上写东西,写的还不是代码,本人学习能力也一般,可能写的不是很好啊。见谅~
Chapter1 绪论
引入:什么是图像?
摄像机:物体通过光学系统,将光信号传递给成像器件,然后通过光电转换,编程电信号,传递给显示设备,成像。
模拟图像和数字图像
- 模拟图像:又称连续图像,是指在二维坐标系中连续变化的图像,图像的像点是无限稠密的,同时具有灰度值(明暗变化)。
模拟图像介质:模拟录像带、电影胶片、底片、照片 - 数字图像:凡是能用计算机处理的图像。空间坐标和明暗程度是离散的、不连续的。
数字图像介质:DVD、VCD、CD,硬盘,闪存卡
输出设备:显示器、投影仪、打印机、绘图仪
应用领域
- 图像通信、宇宙探测、遥感、生物医学、高速摄影、军事、工业生产、公安、交通管理、机器人视觉、娱乐
一些应用解释:
多光谱遥感:对电磁波谱不同谱段做同步摄影遥感,分别获得各个颜色的物体的影像(如水域、植被、土壤),最后再合成。
气象云图:对大气中红外长波辐射观测所形成的图。白色是云,越白或越亮,表示伸展高度越高,温度越低,反之,无云区,颜色越深,温度越高。
计算机视觉和机器人视觉区别:前者主要研究视觉检验,精度要求高;后者偏向工程应用,实时性要求,考虑环境。
VR和AR:
VR是把你全面带入虚拟世界,AR是把虚拟的时间带到现实中来(增强现实)
图像处理的三个层次
图像处理:改良视觉体验,从图像到图像(本课程主要研究内容)
图像分析:对图像提取、分割,获得目标的客观信息,从图像到数据
图像理解:对图像内容含义的理解,符号运算。高层操作
接下来几节会学的概念:
图像增强、图像复原、图像压缩、图像分析、图像识别、图像融合、伪彩色处理(自动上色)、图像描述(提取点、线、物体)、其他处理方法…
图像对比度定义:I是亮度
有趣知识科普:人眼视觉
- 适应亮度范围宽,但同时识别范围窄。例如从亮屋到黑屋啥都看不见,从黑屋带亮屋适应快。
- 很难判断亮度的绝对值(换个底色就觉得不一样亮了)
- 马赫带现象,
- 空间错觉
图像二维数组表示:f(x,y)
采样:决定图像的尺寸大小
量化:决定图像的灰度级(不同灰度值的个数)
像素:一个一个点,图像最小的不可分割单位。
Chapter2 matlab基础
(可能考的比较多?…)因为我没做过数模,matlab小白,所以基本知识多写一点
matlab可以单行命令执行,也可以写成文件,
M文件有两种:命令(script)文件和函数(function)文件
全局变量/局部变量:和python的jupyter用法一样
基本函数
%全零矩阵的生成
A=zeros(n);% n*n全零矩阵
A=zeros(m,n);%m*n全零矩阵,也可写成zeros([m,n])
A=zeros(a1,a2,a3,...);%a1*a2*a3的全零矩阵
A=zeros(size(B