振动力学篇四:连续系统的振动(杆、轴、弦、梁)


本篇只介绍工程中常见的杆,轴,弦和梁的振动特性

1. 杆的轴向振动

对于一轴类物体,其模型如下图所示:
在这里插入图片描述
该系统的轴向振动微分方程为:
∂ ∂ x ( E A ( x ) ∂ u ( x , t ) ∂ x ) = ρ ( x ) A ( x ) ∂ 2 u ( x , t ) ∂ t 2 , 0 < x < l \frac{\partial}{\partial x}\left(E A(x) \frac{\partial u(x, t)}{\partial x}\right)=\rho(x) A(x) \frac{\partial^{2} u(x, t)}{\partial t^{2}}, 0<x<l x(EA(x)xu(x,t))=ρ(x)A(x)t22u(x,t),0<x<l
对于等截面直杆,其轴向振动微分方程为:
∂ 2 u ( x , t ) ∂ x 2 = 1 a 2 ∂ 2 u ( x , t ) ∂ t 2 , 0 < x < l \frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} u(x, t)}{\partial t^{2}}, 0<x<l x22u(x,t)=a21t22u(x,t),0<x<l
其中, a = E ρ a=\sqrt{\frac{E}{\rho}} a=ρE 为声波以杆的材料为介质的纵向传播速率。

2. 轴的扭转振动

轴在扭转时的物理模型为:
在这里插入图片描述

∂ 2 θ ( x , t ) ∂ x 2 = 1 b 2 ∂ 2 θ ( x , t ) ∂ t 2 , 0 < x < l \frac{\partial^{2} \theta(x, t)}{\partial x^{2}}=\frac{1}{b^{2}} \frac{\partial^{2} \theta(x, t)}{\partial t^{2}}, 0<x<l x22θ(x,t)=b21t22θ(x,t),0<x<l
其中, b = G J P J = G ρ b=\sqrt{\frac{G J_{\mathrm{P}}}{J}}=\sqrt{\frac{G}{\rho}} b=JGJP =ρG 为扭转波的传播速率

3. 弦的横向振动

弦的横向振动模型为:
在这里插入图片描述
其自由振动方程为:
∂ 2 u ( x , t ) ∂ x 2 = 1 c 2 ∂ 2 u ( x , t ) ∂ t 2 , 0 < x < l \frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u(x, t)}{\partial t^{2}}, 0<x<l x22u(x,t)=c21t22u(x,t),0<x<l
其中, c = T ρ A c=\sqrt{\frac{T}{\rho A}} c=ρAT

4. 一维波动方程的解

前述的杆的轴向振动,轴的扭转振动,弦的横向振动,都具有相似的形式,这些方程的求解都可以采用分离变量法求解。假设系统的响应形式为:
u ( x , t ) = U ( x ) q ( t ) u(x, t)=U(x) q(t) u(x,t)=U(x)q(t)
其中, q ( t ) = D 1 cos ⁡ ω t + D 2 sin ⁡ ω t q(t)=D_{1} \cos \omega t+D_{2} \sin \omega t q(t)=D1cosωt+D2sinωt U ( x ) = C 1 cos ⁡ ω a x + C 2 sin ⁡ ω a x U(x)=C_{1} \cos \frac{\omega}{a} x+C_{2} \sin \frac{\omega}{a} x U(x)=C1cosaωx+C2sinaωx,这些系数的求解,取决于系统的边界条件与初始条件。例如:

  • 固定边界: u ( 0 , t ) = 0  或  θ ( 0 , t ) = 0 u(0, t)=0 \text { 或 } \theta(0, t)=0 u(0,t)=0  θ(0,t)=0
  • 自由边界:内力为0: ∂ u ( x , t ) ∂ x ∣ x = 0 = 0  或  ∂ θ ( x , t ) ∂ x ∣ x = 0 = 0 \left.\frac{\partial u(x, t)}{\partial x}\right|_{x=0}=0 \text { 或 }\left.\frac{\partial \theta(x, t)}{\partial x}\right|_{x=0}=0 xu(x,t) x=0=0  xθ(x,t) x=0=0

系统的最低频率称为系统的基本频率,相应的振型称为基本振型。系统在振动时,有些点是不动的,这些点称为节点。

5. 梁的横向振动

5.1 梁的横向振动控制方程

梁的横向振动与弦的横向振动运动形式相似,但是物理本质是完全不同的,梁的横向振动的物理模型为:
在这里插入图片描述
梁的横向振动在受力时,受到截面的内力矩与剪力,而弦的横向振动只受到截面的轴力,因此二者的控制方程是完全不同的。梁的横向振动方程为:
∂ 2 ∂ x 2 [ E I ( x ) ∂ 2 w ( x , t ) ∂ x 2 ] + ρ ( x ) A ( x ) ∂ 2 w ( x , t ) ∂ t 2 = f ( x , t ) − ∂ ∂ x m ( x , t ) \frac{\partial^{2}}{\partial x^{2}}\left[E I(x) \frac{\partial^{2} w(x, t)}{\partial x^{2}}\right]+\rho(x) A(x) \frac{\partial^{2} w(x, t)}{\partial t^{2}}=f(x, t)-\frac{\partial}{\partial x} m(x, t) x22[EI(x)x22w(x,t)]+ρ(x)A(x)t22w(x,t)=f(x,t)xm(x,t)

5.2 边界条件

  • 固定端:挠度和横截面转角均为0
    w ( 0 , t ) = 0 , ∂ w ( x , t ) ∂ x ∣ x = 0 = 0 w(0, t)=0,\left.\frac{\partial w(x, t)}{\partial x}\right|_{x=0}=0 w(0,t)=0,xw(x,t) x=0=0
  • 简支端:挠度和弯矩均为0
    w ( 0 , t ) = 0 , E I ( x ) ∂ 2 w ( x , t ) ∂ x 2 ∣ x = 0 = 0 w(0, t)=0,\left.E I(x) \frac{\partial^{2} w(x, t)}{\partial x^{2}}\right|_{x=0}=0 w(0,t)=0,EI(x)x22w(x,t) x=0=0
  • 自由端:弯矩和剪力均为0
    E I ( x ) ∂ 2 w ( x , t ) ∂ x 2 ∣ x = 0 = 0 , ∂ ∂ x [ E I ( x ) ∂ 2 w ( x , t ) ∂ x 2 ] ∣ x = 0 = 0 \left.E I(x) \frac{\partial^{2} w(x, t)}{\partial x^{2}}\right|_{x=0}=0,\left.\frac{\partial}{\partial x}\left[E I(x) \frac{\partial^{2} w(x, t)}{\partial x^{2}}\right]\right|_{x=0}=0 EI(x)x22w(x,t) x=0=0,x[EI(x)x22w(x,t)] x=0=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值