行业知识图谱调查报告(三):行业知识图谱应用及实践

行业知识图谱调查报告(三):行业知识图谱应用及实践

相关系列笔记:
行业知识图谱调查报告(一):知识图谱概述
行业知识图谱调查报告(二):知识图谱构建及行业知识图谱构建举例
行业知识图谱调查报告(三):行业知识图谱应用及实践

我自己整理的,有错误或者更好的资料欢迎指正,谢谢大家!!!

四、行业知识图谱应用

在这里插入图片描述
图11 知识图谱在各领域中的应用概览

  行业知识图谱常常用来辅助各种复杂的分析应用或决策支持,如图11所示,在多个领域均有应用,不同领域的构建方案与应用形式则有所不同,本节将以金融、公安、生物医疗、教育、司法等领域为例,从不同方面,如图谱构建与知识应用等介绍行业知识图谱的技术构建应用与研究现状。

  行业知识图谱,需要海量多源异构数据的构建、存储和灵活计算。在构建方面,要以人机交互的方式,结合规则和机器学习,提高构建效率。在存储方面,要结合客户的使用场景和需求,综合设计架构。在应用方面,不仅仅是提供一个工具,而要结合行业知识 know-how,研发贴近实际业务的应用,最大化发挥行业知识图谱的业务价值。

4.1 金融领域

  知识图谱广泛应用于金融行业,在于其基础设施好、信息化较早且成熟,数据标准化程度高;业务由数据驱动,应用范围较广;市场规模大,金融机构在数据业务的付费意愿高,付费能力强,其具体优势如图12所示。智慧金融作为一个有机整体,知识图谱提供了金融领域知识提取、融合、分析、推断、决策等功能,如图13所示。

在这里插入图片描述

图12 知识图谱在金融行业的应用优势
在这里插入图片描述

图13智慧金融全景图

  基于知识图谱深度感知、广泛互联孤立数据、高度智能共享分析等优势,客户可扩展现有数字资源的广度和深度,支撑智能应用,建立知识图谱、补全因果链条,解决和打破信息茧房,为智慧金融建设提供了一种可行的方案。金融知识图谱产品典型技术架构如图14所示。
在这里插入图片描述

图14金融知识图谱产品典型技术架构

  在场景方面,智慧金融涵盖智慧支付、智慧财富管理、智慧银行、智慧证券、智慧保险、智慧风控等诸多方面。在应用功能方面,从KYC、奥情分析、个人/企业信用分析、风险传导、营销推荐、智能问答、知识库等都是典型的知识图谱应用。金融知识图谱构建过程如图15所示,包括数据抽取、信息提取、知识融合、知识加工等。

在这里插入图片描述

图15智慧金融知识图谱构建

  以银行为例,如图16所示,我们可以看到知识图谱在金融全场景中的重要应用价值。

在这里插入图片描述

图16 知识图谱在银行场景中的应用

  金融知识图谱常见的实体包括:公司、产品、证券、人等。实体间的关系,如公司-人之间,主要有股权关系和任职关系;公司-公司间关系,有股权关系,供应商关系,竞争关系等等;公司-产品间关系,有生产关系,采购关系等等;产品-产品间关系,主要有上下游关系等等。这其中,有些实体和关系,可以自动抽取生成。如公司-公司间的股权关系,公司-人之间的股权关系和任职关系,均可来源于工商局注册登记公开信息,其结构化程度很高,实体、关系抽取难度不大。而产品-产品间上下游关系,则很难有系统性的半结构化数据源,其实体和关系呈碎片化分散在百科类网站、研究报告、专家资料等文本/图像中,这给抽取和甄别带来很大挑战。

在这里插入图片描述

图17 金融知识图谱示例

  建立金融知识图谱可分为几个步骤:

  (1)从海量异构非结构化数据中辨别金融实体
  (2)定义并挖掘金融实体间的各种关系,从而生成知识图谱
  (3)定义并表达业务逻辑,在知识图谱上实现各种具体任务,如推理等

  实体-关系抽取技术,是信息抽取研究中的重要课题。其主要目的是将非结构化的文本数据转化为结构化或半结构化信息。即:从文本中抽取出特定的实体(Entity)信息,如时间、人物、地点、公司、产品等;以及实体间的各种关系,如地理位置关系、雇佣关系、股权关系等。实体确定了知识图谱中的点,而关系则确定了点与点之间的边。

  常用的实体关系抽取方法,有基于专家知识库的方法和基于机器学习的方法等。基于专家知识库的方法需要专家构筑大规模的领域知识库,这需要大量专家劳动。机器学习算法需要构造特征向量形式的训练数据;然后使用各种机器学习算法,如支持向量机等作为学习机构造分类器。这种方法被称作基于特征向量的学习算法。

  知识图谱在智慧金融中的应用可分为金融监管、金融机构应用和金融服务。金融监管是国家金融监管机构金融市场及相关机构与个人的监督管理,金融机构应用是指金融参与者利用知识图谱技术实现的风险预测、智能营销等应用,金融服务是指金融机构面向企业或公众提供的智能化金融服务,如图18所示。

在这里插入图片描述

图18知识图谱在智慧金融中的应用

4.2 公安领域

  智慧公安是利用互联网、物联网、人工智能、云计算、智能引擎、视频技术、知识图谱等技术为支撑,以公安信息化为核心,通过互联化、物联化、智能化的方式,促进公安系统各个功能模块高度集成、协调运作,实现警务信息“强度整合、高度共享、深度应用”之目标的警务发展新理念和新模式。通过知识图谱和机器学习等相关的人工智能技术,全面整合、融合及关联各数据链路产生的数据信息,可更全面、更深刻把握犯罪形势、动态特征、局部特点、演变规律、发展趋势,为决策指挥提供动态的、系统的数据依据,实现传统决策向数据化、动态化、精细化决策转变,以达到实现智能公安的目的。智能公安的全景图如图19所示,其中包括了面向公安领域的基础资源、平台支撑、数据支撑、核心数据支撑核心算法和智能应用等。

在这里插入图片描述
图19智能公安全景图

  公安大数据是全面助推公安工作质量、效率、动力变革的重要力量。随着跨部门、警种、业务的协同和整合大趋势的到来,知识图谱作为大数据和人工智能双重技术的应用表现,能通过数据分析、文本语义分析等手段,抽取出人、物、地、机构、虚拟身份等实体,并根据其中的属性、时空、语义、特征、位置联系等建立相互关联,构建一张多维多层的,实体与实体、实体与事件的关系网络。根据数据的接入实时进行自动更新,能提供更有深度的信息,真正激发大数据的价值。在解决公安大数据发展中面临的数据缺乏关联性、缺乏全警种智能应用等问题时发挥重要作用。

  建设公安知识图谱仍遵循知识图谱搭建逻辑,但其中知识抽取、本体层建设和实战应用开发等环节需要运用分布式储存、关联算法、语义推理等技术,将公安部门多年业务中积累的技战法进行总结和可视化处理,与技术算法相互转换,以集成犯罪和预测模型,实现重点人员场所关联分析、物品关联分析、团伙关系分析、异常事件挖掘、相似案件推理等功能,提升公安信息化的智能化水平,促进公安情报研判的演进,高效服务公安的打防管控工作,甚至做到精准的犯罪预测预警。
在这里插入图片描述
图20 公安知识图谱构建流程

  图21展示了基于公安知识图谱的应用分类,可分为4大方向:全息档案研判、战法应用、情报检索与分析、事件预警等。其中,全息档案研判包括认为画像、案件画像等;战法应用包括高危人员分析研判、嫌疑人分析、串并案件分析、伴随分析及时空轨迹研判等;情报检索与分析包括深度语义检索、警务知识问答、网络有害信息识别等;事件预警包括群体性事件预警、社会稳控事件预警等。可有效指导城市公共安全防控、警力资源调度、重大安保布防等应用,将极大地提供公安警力资源的利用率,降低城市案发率。
在这里插入图片描述
图21 基于公安知识图谱的应用分类图

4.3 生物医疗领域

  随着技术的不断进步,采用理论研究与实证分析、应用研究相结合的方法,在收集大量资料与数据、阅读文献的基础上梳理和总结经典的医学管理与决策理论以及大数据管理与分析方法的医疗知识图谱已经实现。智慧医疗是利用先进的物联网与移动通信技术、大数据及人工智能等新一代IT技术,实现医疗信息系统与医疗过程的智能化辅助与自动化处理,实现医疗业务流程的数字化运作,实现患者与医务人员、医疗机构医疗设备之间的互动。短期来看,在医疗过程辅助、患者服务、医学科研以及临床医学教育等方面,知识驱动的智能化服务,能够辅助医院提供更优质的医疗服务,实现更好的医院管理;辅助患者的整个诊疗与健康管理过程;辅助医生开展知识和数据驱动的前沿医学研究;辅助医学生、低年资医生和基层医生开展临床思维训练与实践演练。整体技术路线如图22所示,在此基础上开展应用研究,研发系统对理论成果进行验证,根据评测标准对应用效果进行测评。总体技术路线为建立知识表示模型、构建医学知识图谱、提供医学知识服务、研发知识服务系统,具有较强的可行性和创新性。

在这里插入图片描述
图22 生物医疗

  首先基于资源描述框架网络本体语言建立医学知识表示模型,包括医学体分类体系以及建模实体不确定性关联;然后从电子病历、临床指南和医学主题词表等多源异构医学大数据中抽取医学信息,采用条件随机场模型实体、朴素贝叶斯模型抽取实体关系,关联规则挖掘方法抽取实体属性。提出实体链接方法和基于图的重启随机游走方法进行知识融合,进一步提髙知识质量,构建医学知识图谱。

  基于强大的语义处理与开放互联能力,知识图谱对医学领域而言,能够建立较系统完善的知识库并提供高效检索;面对知识管理、语义检索、商业分析、决策支持等方面需求,医学知识图谱能推进海量数据的智能处理,催生上层智能医学的应用。
在这里插入图片描述

图23 知识图谱在医疗领域中的应用优势

  当前医疗保健费用、需求的增长与优质医疗资源不足间的问题在不断突出,随着近几年来人工智能的飞速发展,以及精准医疗、智慧医疗的提出,医学知识图谱应用关注度在日益上升,辅助诊疗大有可为。

  知识图谱与医疗数据的结合形成医疗知识图谱,医疗数据包括:医疗专业知识、医疗文献、医疗常识、电子病

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南有芙蕖

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值