pytorch的优点之一是可以使用GPU加速,但是默认情况下,只会使用一个GPU。本文内容是如果使用多个GPU并行运算。
代码
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
input_size = 5
output_size = 2
batch_size = 30
data_size = 100
#设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#数据集:size是单个向量的大小,length是向量的个数
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
#加载器:batch_size = 30,即单次循环中读入的数据是30 * 5
rand_loader = DataLoader(dataset=RandomDataset(size=input_size, length=data_size), batch_size = batch_size, shuffle=True)
#神经网络:只有一个线性层,输入5,输出2
class Model(nn.Module):
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
def forward(self, input):
output = self.fc(input)
print("\t In Model: input size", input.size(), "output Size", output.size())
return output
#实例化model
model = Model(input_size, output_size)
#判断是否存在多个GPU
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUS")
#将模型部署到多个GPU上
model = nn.DataParallel(model)
#神经网络移植到GPU
model.to(device)
#开始训练
for data in rand_loader:
#输入移植到GPU
input = data.to(device)
output = model(input)
print("Outsida:input size", input.size(), "output_size", output.size())
这里并行加速的核心代码是
model = nn.DataParallel(model)
数据并行自动拆分了数据并且将任务发送到多个GPU上,当每个模型都完成自己的任务后,DataParallel收集并合并这些结果并返回。
输出
此处,我有两个可用的GPU。
每次for循环中读取30个长度是5的向量,由于有2个GPU,因此每个GPU分配15个,在模型内部,就是15*5的张量。
说明
- 使用多个GPU并行处理速度不一定更快。笔者测试的数据集较小,神经网络也很简单,使用多个GPU训练用时可能不降反升。