Frank-Wolfe和梯度投影方法MATLAB实现

Frank-Wolfe法方法

1. 适用求解问题

Frank和Wolfe于1956年提出求解非线性规划带有线性约束问题的一种算法。

研究非线性问题:

m i n f ( x ) s . t . A x = b , x ≥ 0 \begin{aligned} min \quad &f(x) \\ s.t. \quad &Ax=b, \\ &x\ge0 \end{aligned} mins.t.f(x)Ax=b,x0

其中A是 m × n m \times n m×n , 秩为 m m m, b b b m m m纬列向量, f ( x ) f(x) f(x)是连续可微函数。

Frank-wolfe算法的基本思想是:在每次迭代过程中,将目标函数 f ( x ) f(x) f(x)线性化,通过解线性规划求得下降可行方向,进而沿此方向在可行域内作一维搜索。

2. 求解步骤

求解步骤参考陈宝林老师的《最优化理论与算法》一书,具体步骤如下:

在这里插入图片描述

3. 求解示例

测试问题:

m i n f ( x ) = x 1 2 + x 2 2 − x 1 × x 2 − 2 × x 1 + 3 × x 2 s . t . x 1 + x 2 + x 3 = 3 ; x 1 + 5 x 2 + x 4 = 6 ; x 1 , x 2 , x 3 , x 4 ≥ 0 \begin{aligned} min \quad &f(x)=x_1^2+x_2^2-x_1 \times x_2 -2\times x_1 + 3 \times x_2 \\ s.t. \quad &x_1+x_2+x_3=3; \\ & x_1 + 5x_2 + x_4=6; \\ & x_1,x_2,x_3,x_4 \ge0 \end{aligned} mins.t.f(x)=x12+x22x1×x22×x1+3×x2x1+x2+x3=3;x1+5x2+x4=6;x1,x2,x3,x40

设定初始解 x = ( 2 , 0 , 1 , 4 ) T x={(2,0,1,4)}^{T} x=(2,0,1,4)T,迭代过程图如下:
img

经过两次迭代找到最优解(K-T点)为 ( 1 , 0 , 2 , 5 ) T {(1,0,2,5)}^{T} (1,0,2,5)T,由于计算误差的存在,更改初始解往往fw方法往往不容易收敛,例如将初始解更改为 x = ( 0.5 , 1 , 0.5 , 0.5 ) T x={(0.5,1,0.5,0.5)}^{T} x=(0.5,1,0.5,0.5)T,迭代过程图如下:

img

下面要介绍的梯度投影法没有这个问题。

梯度投影法

1. 适用求解问题

考虑问题

m i n f ( x ) s . t . A x ≥ b , E x = e \begin{aligned} min \quad &f(x) \\ s.t. \quad &Ax \ge b, \\ &Ex=e \end{aligned} mins.t.f(x)Axb,Ex=e

其中 f ( x ) f(x) f(x)是可微函数, A A A m × n m\times n m×n矩阵, E E E l × n l\times n l×n矩阵;

梯度投影法的基本思想:从可行点出发,沿可行方向搜索,当迭代出发点再可行域内部时,沿负梯度方向搜索,当迭代出发点再某些约束的边界上时,将该点处的负梯度投影到 M M M的零空间, M M M是起约束或作用约束的梯度为行构造成的矩阵。同样,梯度投影也可以找到K-T点。

2. 求解步骤

在这里插入图片描述

3. 求解示例

测试问题:

m i n f ( x ) = 2 × x 1 2 + 2 × x 2 2 − 2 × x 1 × x 2 − 4 × x 1 − 6 × x 2 s . t . − x 1 − x 2 ≥ − 2 ; − x 1 − 5 x 2 ≥ − 5 ; x 1 , x 2 ≥ 0 \begin{aligned} min \quad &f(x)=2\times x_1^2 + 2\times x_2^2 - 2 \times x_1 \times x_2 - 4\times x_1 - 6 \times x_2 \\ s.t. \quad &-x_1-x_2 \ge -2; \\ & -x_1 - 5x_2 \ge -5; \\ & x_1,x_2 \ge0 \end{aligned} mins.t.f(x)=2×x12+2×x222×x1×x24×x16×x2x1x22;x15x25;x1,x20

设定初始解 x = ( 0 , 0 ) T x={(0,0)}^{T} x=(0,0)T,找到最优解为 ( 1.129 , 0.77419 ) T {(1.129,0.77419)}^{T} (1.129,0.77419)T。迭代过程图如下:
img

详细代码地址

github链接

  • 9
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: Frank-Wolfe算法是一种优化算法,用于解决凸优化问题。它的主要思想是在每一步中,沿着当前最优解和梯度之间的线性组合方向移动,直到达到最优解。在Matlab实现Frank-Wolfe算法,可以使用以下步骤: 1. 定义优化问题的目标函数和约束条件。 2. 初始化算法参数,包括初始解、步长、迭代次数等。 3. 在每一步中,计算当前解的梯度,并计算最优线性组合方向。 4. 根据步长和最优线性组合方向,更新当前解。 5. 重复步骤3和4,直到达到最优解或达到最大迭代次数。 需要注意的是,Frank-Wolfe算法的收敛速度较慢,因此在实际应用中可能需要结合其他优化算法使用。 ### 回答2: Frank-Wolfe算法是一种用于线性和凸最优化的迭代算法,它用于求解无约束凸最优化问题,各种应用领域中十分常用。MATLAB是一种用于科学计算、数据分析和可视化的高级计算机语言和交互式环境,拥有丰富的矩阵操作和算法库。 在MATLAB实现Frank-Wolfe算法,可以按照以下步骤进行: 1. 定义目标函数 首先需要定义目标函数,即要优化的函数。目标函数可能是线性函数,也可能是凸函数,具体应用领域不同,目标函数的形式也会有所不同。 2. 定义梯度 Frank-Wolfe算法的核心是梯度下降,需要计算目标函数的梯度。在MATLAB中,可以使用gradient函数来计算梯度。 3. 定义搜索方向 Frank-Wolfe算法中,每次迭代需要寻找一个方向,使得搜索到的点能够沿着目标函数下降。方向的选择是通过计算梯度和约束条件等来实现的。在MATLAB中,可以使用fmincon函数来寻找搜索方向。 4. 更新变量 每次搜索找到一个新的变量后,需要将这个变量作为下一次迭代的初始值。在MATLAB中,可以使用fmincon函数返回的解决方案来更新变量。 5. 终止条件 最后,需要指定终止条件,比如迭代次数达到一定数量或误差小于特定阈值。在MATLAB中可以使用while循环来实现。 除此之外,还需要注意在实现中加入异常处理和错误检查的代码,以保证程序的可靠性和鲁棒性。 ### 回答3: Frank-Wolfe算法也叫做条件梯度算法(Conditional Gradient Algorithm),是一种用于解决线性规划问题的算法。该算法在每一步选择在梯度方向上最小的线性函数作为近似解,然后在该线性函数处进行更新,直到找到最优解。 在Matlab实现Frank-Wolfe算法,可以遵循以下步骤: 1. 定义优化的目标函数以及约束条件 定义目标函数和约束条件需要使用Matlab自带的优化工具箱。例如,可以使用“linprog”函数来定义目标函数和不等式约束条件。 2. 初始化参数 初始化算法需要用到的参数,例如学习率和迭代次数等。 3. 初始解的选择 初始解可以选择问题的“最佳估计”,或任何旧的解。 4. 迭代更新解 在每一步中,使用当前解计算梯度并找到梯度方向上最小的线性函数。然后,将线性函数处的点作为新的解,并根据学习率更新当前解。算法重复此过程直到达到最大迭代次数或满足特定的停止标准。 5. 输出最终解 当迭代次数达到最大限制或达到特定的停止标准时,输出最终的解。 需要注意的是,Frank-Wolfe 算法比其他线性规划算法更为灵活,因为它不需要具体的约束和问题形式,对于任何线性规划问题都适用。但它往往比其他方法更慢,特别是在有大量约束条件的情况下。 综上所述,Matlab实现Frank-Wolfe算法的关键在于定义目标函数、初始化参数和迭代更新解。虽然该算法可能比其他线性规划算法更慢,但其灵活性和可适应性使其成为解决不同类型线性规划问题的有力工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值