java 二元牛顿迭代法求解二元方程组

1.之前讨论过利用牛顿一元迭代公司可以求解一元方程,本文档介绍如何求解二元方程组

 在有些需要进行复杂计算的程序中我们有可能需要求解复杂的二元方程 (如建筑学程序)

假设存在如下方程组:

xy -e^x + e^y -4 =0

xe^y -sin(xy) = 0

则有:

f'x = y - e^x (f(x,y) = xy -e^x + e^y -4 关于x的偏导数 )

f'y = x + e^y(f(x,y) = xy -e^x + e^y -4 关于y的偏导数 )

g'x = e^y - ycos(xy) (g(x,y) = xe^y -sin(xy) 关于x的偏导数 )

g'y = xe^y - xcos(xy) (g(x,y) = xe^y -sin(xy) 关于x的偏导数 )

带入迭代公式  :

 fgy- gfy|(x, y) = f(x,y)g'y - g(x,y)f'y = (xy -e^x + e^y -4)*(xe^y - xcos(xy)) - (xe^y -sin(xy))*(x + e^y)

g'xf'x - f'xg'y|(x, y)= (e^y - ycos(xy) )*(x + e^y) - (y - e^x)*(xe^y - xcos(xy))

gf'x - fg'x|(x, y) = g(x,y)f'x - f(x,y)g'x = (xe^y -sin(xy) )*(y - e^x ) - (xy -e^x + e^y -4)*(e^y - ycos(xy))

java 代码如下:

    public static void main(String[] args) {
        double x = 1.0, y = 1.0;
        String fxy = "xy -e^x + e^y -4";
        String gxy = "xe^y -sin(xy)";
        double accuracy = 0.5; // 精度  精度过高时,double会溢出

        while (Math.abs(x*y - Math.pow(Math.E, x) + Math.pow(Math.E, y)-4) > accuracy ||
                Math.abs(x* Math.pow(Math.E, y) - Math.sin(x*y)) > accuracy ){
//            fgy- gfy|(x, y) = f(x,y)g'y - g(x,y)f'y = (xy -e^x + e^y -4)*(xe^y- xcos(xy)) - (xe^y -sin(xy))*(x + e^y)
//
//            g'xf'x - f'xg'y|(x, y)= (e^y - ycos(xy))*(x + e^y) - (y - e^x)*(xe^y- xcos(xy))
//
//            gf'x - fg'x|(x, y) = g(x,y)f'x -f(x,y)g'x = (xe^y -sin(xy) )*(y - e^x ) - (xy -e^x + e^y -4)*(e^y - ycos(xy))
            x = ((x*y -Math.pow(Math.E, x) + Math.pow(Math.E, y) -4) *   (x* Math.pow(Math.E, y) - x * Math.cos(x * y))
                    - (x* Math.pow(Math.E, y) -Math.sin(x*y))*(x + Math.pow(Math.E, y)) )
                    /   ((Math.pow(Math.E, y) - y* Math.cos(x * y)) * (x + Math.pow(Math.E, y))
                    - (y - Math.pow(Math.E, x))*(x * Math.pow(Math.E, y)- x * Math.cos( x * y)));
            y = ((x*Math.pow(Math.E, y) -Math.sin(x*y) )*(y - Math.pow(Math.E, x) )
                    - (x*y -Math.pow(Math.E, x) + Math.pow(Math.E, y)-4)*(Math.pow(Math.E, y) - y* Math.cos(x*y)))
                    / ((Math.pow(Math.E, y) - y* Math.cos(x * y)) * (x + Math.pow(Math.E, y))
                    - (y - Math.pow(Math.E, x))*(x * Math.pow(Math.E, y)- x * Math.cos( x * y)));
        }
        System.out.println(x);
        System.out.println(y);
        System.out.println(x*y - Math.pow(Math.E, x) + Math.pow(Math.E, y)-4);
        System.out.println(x* Math.pow(Math.E, y) - Math.sin(x*y));
    }

运行结果:

-3.6026863956355135
-1.1622735456336708
0.47283093757503547
-0.2615446960095503

### 回答1: 在MATLAB中,可以使用牛顿迭代求解二元线性方程组。假设有一个二元线性方程组如下: f1(x, y) = 0 f2(x, y) = 0 使用牛顿迭代求解方程组的思路如下: 1. 初始化迭代的初始值x0和y0。 2. 计算方程组的雅可比矩阵Jacobian: J(x, y) = [∂f1/∂x ∂f1/∂y] [∂f2/∂x ∂f2/∂y] 3. 根据牛顿迭代的迭代公式进行迭代,直到满足终止条件。迭代公式为: [x_i+1, y_i+1] = [x_i, y_i] - J(x_i, y_i)^(-1) * [f1(x_i, y_i), f2(x_i, y_i)] 其中,^(-1)表示矩阵的逆。 4. 对于每次迭代得到的[x_i+1, y_i+1],判断是否满足终止条件。可以选择判断迭代步长是否足够小,即计算||[x_i+1, y_i+1] - [x_i, y_i]||是否小于设置的阈值。 5. 如果满足终止条件,迭代结束,输出[x_i+1, y_i+1]作为方程组。如果不满足终止条件,继续进行迭代。 在MATLAB中,可以按照以上思路编写相应的代码实现牛顿迭代求解二元线性方程组。通过设置合适的初始值和终止条件,可以得到该方程组的数值。 ### 回答2: 牛顿迭代是一种迭代逼近,用于求解非线性方程的根。而对于二元线性方程组求解,则可以将其转化为一个非线性方程求解问题。 先设定初始向量x0,然后使用牛顿迭代公式来不断更新该向量,直到收敛于方程组。具体的迭代公式如下: x(k+1) = x(k) - (Jf(x(k)))^(-1) * f(x(k)) 其中,k表示迭代次数,x(k)为第k次迭代得到的向量,Jf(x(k))为方程组在x(k)处的雅可比矩阵,f(x(k))为方程组的函数向量。该雅可比矩阵可以通过对方程组的偏导数计算得到。 具体实现时,可以使用MATLAB的代码来进行计算。首先,需要设置初始向量x0,然后通过循环的方式进行迭代计算,直到满足停止迭代的条件(例如,设定一个迭代次数上限或者两次迭代之间的差异小于一个阈值)。在每次迭代中,需要计算雅可比矩阵和函数向量,并更新向量。 需要注意的是,迭代法的收敛性及效率与初始向量的选取有关。因此,初始向量的选取应尽量靠近方程组,以提高收敛速度。此外,当方程组存在多个时,可能会有多个极值点。因此,迭代法可能收敛于局部极值而不是全局极值。在实际应用中,需要对方程组的性质和问题的要求进行综合考虑来选择合适的算。 ### 回答3: Matlab是一种强大的数值计算软件,可以使用它来实现牛顿迭代求解二元线性方程组牛顿迭代是基于函数的不动点理论,用于求解非线性方程组的数值算。对于二元线性方程组,我们可将其表示为如下形式: f1(x, y) = 0 f2(x, y) = 0 其中f1(x, y)和f2(x, y)是关于未知数x和y的函数。牛顿迭代的基本思想是,选择一个初始(x0, y0),然后通过迭代逼近方程组。具体的迭代公式如下: x(k+1) = x(k) - J^(-1)(x(k), y(k)) * [f1(x(k), y(k)); f2(x(k), y(k))] y(k+1) = y(k) - J^(-1)(x(k), y(k)) * [f1(x(k), y(k)); f2(x(k), y(k))] 其中,J(x, y)是方程组在(x, y)处的雅可比矩阵。迭代进行直至满足一定的停止准则。 现在我们来使用Matlab实现牛顿迭代求解二元线性方程组的代码: function [x, y] = NewtonMethod(f1, f2, J, x0, y0, maxIter, tol) for k = 1:maxIter F = [f1(x0, y0); f2(x0, y0)]; J_inv = inv(J(x0, y0)); delta = -J_inv * F; x = x0 + delta(1); y = y0 + delta(2); if norm([x - x0; y - y0]) < tol break; end x0 = x; y0 = y; end end 其中,f1和f2是方程组的函数手柄;J是雅可比矩阵的函数手柄;x0和y0是初始;maxIter是最大迭代次数;tol是迭代停止准则。 通过调用上述函数,即可求解给定的二元线性方程组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值