神经网络
单个样本时:
和均表示是第一层的参数,用方括号表示。 其中下角标表示的是第一层第n个点的参数
多个样本时:
上面是神经网络梯度下降的迭代过程,其中重要的是参数求导:
keepdims=true作用是确认的矩阵格式,符号*是点乘,即矩阵对应项相乘。
参数初始化
神经网络参数初始化时不能全部初始化为0,这样会让每个隐藏层的函数相同,隐藏层堆成,这样的话设置多个隐藏层就没有意义了。解决办法是随机初始化:
参数0.01的作用是使参数初始化值尽量小,如果参数初始化值过大,z也会过大,当使用激活函数或者tanh激活函数时,z值大时函数趋于平缓,这样会使梯度下降速率变慢。