神经网络和深度学习——浅层神经网络(3)

神经网络

单个样本时:

w^{[1]}b^{[1]}均表示是第一层的参数,用方括号表示。w^{[1]}=\begin{bmatrix} - & w_{1}^{[1]T}&- \\ -&w _{2}^{[1]T} & -\\ - & w _{3}^{[1]T} & -\\ -& w _{4}^{[1]T} &- \end{bmatrix}       其中下角标表示的是第一层第n个点的参数

多个样本时:

上面是神经网络梯度下降的迭代过程,其中重要的是参数求导:

keepdims=true作用是确认db^{[n]}的矩阵格式,符号*是点乘,即矩阵对应项相乘。

dw^{[2]}(n^{2,n^{1}})=\frac{1}{m}\times \begin{bmatrix} dz_{1}^{[2](1)} & ... &dz_{1}^{[2](m)} \\ \mid & ... &\mid \\ dz_{n^{2}}^{[2](1)} & ... &dz_{n^{2}}^{[2](m)} \end{bmatrix}\times \begin{bmatrix} a_{1}^{[1](1)} & ... &a_{n^{1}}^{[1](1)} \\ \mid & ... &\mid \\ a_{1}^{[1](m)}& ...& a_{n^{1}}^{[1](m)} \end{bmatrix}

参数初始化

神经网络参数初始化时不能全部初始化为0,这样会让每个隐藏层的函数相同,隐藏层堆成,这样的话设置多个隐藏层就没有意义了。解决办法是随机初始化:

参数0.01的作用是使参数初始化值尽量小,如果参数初始化值过大,z也会过大,当使用\sigma激活函数或者tanh激活函数时,z值大时函数趋于平缓,这样会使梯度下降速率变慢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值