提取神经网络中参数(放入numpy矩阵中)的方法

参考:https://blog.csdn.net/leviopku/article/details/78510977

最近需要把resnet中的参数(权重,偏置)从网络中取出来分析,网上资料很少,怼了一下午算是成功了,记录一下。

选择的框架是TF,因为pytorch提出来的参数数据结构复杂,而TF可以直接变为numpy。

思路就是先把所有参数用tf.train.NewCheckpointReader 和 get_variable_to_shape_map()
变为字典。Key就是网络结构的名字,然后用一个循环,提取每层的参数,并reshape为行向量(因为维度变化大,所以要先求参数量),然后拼接到初始的矩阵中。

最后初始矩阵就会变为结果矩阵。

代码如下:
在这里插入图片描述
代码中未显示全的是tf模型ckpt文件的路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值