支持向量机学习笔记

一、简介

有数据集T=\left \{ (x_1,y_1) ,(x_2,y_2) ,...(x_N,y_N) \right \}

分隔超平面:将线性可分数据分隔开来的边界 wx+b 。当数据为二维数据时,那么分割超平面就是一条直线。

支持向量:离分隔超平面最近的那些点。

可以将两类数据正确分开的平面有无数个,我们希望支持向量离分隔超平面的间隔越大越好,越大也就说明我们找到的分隔超平面越可信。

二、函数间隔和几何间隔

函数间隔:一般来说,当超平面 wx+b=0 确定的情况下,\left | wx+b \right | 能够相对的表示点 x 距离超平面的远近,而wx+b 的符号与标记 y 的符号是否一致能够表示分类是否正确,所以可用 y(wx+b) 来表示分类的正确性和确信度。

\hat{\gamma _i}=y_i(wx_i+b)

几何间隔\gamma _i=y_i\frac{(wx_i+b)}{\left \| w \right \|},即点到平面的距离。

三、间隔最大化

要让间隔最大化,首先要找到支持向量,支持向量就是离分隔平面最近的一部分点,这些点到分隔平面的距离都要小于某个值。然后让支持向量到分隔平面的几何间隔最大,即:在 y_i(wx_i+b)>=\hat{\gamma } 的条件下,求\frac{\hat{\gamma }}{\left \| w \right \|} 的最大值,等价于:在y_i(wx_i+b)>=1的条件下,求 \frac{1}{2}\left \| w \right \|^{2}的最小值。

由此可以用拉格朗日乘子法中的不等式约束条件g(x)=1-y_i(w^{T}x+b)<=0,为f(x)=\frac{1}{2}\left \| w \right \|^{2}的每条约束添加乘子,得到函数:

L(w,b,\alpha ) = f(x)+\sum_{j=1}^{n}\alpha _jg_j(x)=\frac{1}{2}\left \| w \right \|^{2}+\sum_{j=1}^{n}\alpha _j(1-y_i(w^{T}x+b))

w,b 求偏导得:\frac{\partial L(w,b,\alpha )}{\partial w}=w-\sum_{j=1}^{n}\alpha _jy_jx_j\frac{\partial L(w,b,\alpha )}{\partial b}=-\sum_{j=1}^{n}\alpha _jy_j。令两个偏导为0,得

w=\sum_{j=1}^{n}\alpha _jy_jx_j,b=0

最后得:max \sum_{i=1}^{m}\alpha _i-\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha _iy_ix_i^{T}\alpha _jy_jx_j , 约束条件为:\sum_{j=1}^{m}\alpha _jy_j=0,\alpha _j>=0,i=1,2...m

f(x)=w^{T}x+b=\sum_{j=1}^{m}\alpha _jy_jx_j\cdot x+b

使用拉格朗日乘子法对于不等式约束要遵循KKT条件。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值