使用一阶微分处理图像——梯度
函数f(x,y)梯度的定义
几何特性是 f 在位置(x, y)处最大变化率的方向。其幅值表示为M(x, y)。M(x,y)也是图像,里面的值是梯度,通常称为梯度图像
梯度向量的分量是微分,所以它们是微分算子。但向量的幅度不是,因为做了平方和平方根操作。另一方面偏微分不是旋转不变的(各向同性),而梯度向量的幅度是旋转不变的。在某些实现中,用绝对值来近似平方和平方根更适合计算。
注
一维函数f(x)的一阶微分差分形式:
罗伯特交叉梯度算子
偶数模板不好实现,改进为3*3
代码
import numpy as np
from PIL import Image
import cv2
imgfile = "circle.PNG"
OriginalPic = np.array(Image.open(imgfile).convert('L')