使用一阶微分处理图像——梯度

本文介绍了一阶微分在图像处理中的应用,重点讨论了函数f(x,y)的梯度定义及其几何特性,强调了梯度表示图像的最大变化率方向和幅值。还提及了罗伯特交叉梯度算子的使用,并提供了相应的代码实现及效果展示。" 105301640,9348113,Spark MLlib中的模型性能评估,"['大数据', 'Apache Spark', '机器学习', '模型性能']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用一阶微分处理图像——梯度

函数f(x,y)梯度的定义

在这里插入图片描述
几何特性是 f 在位置(x, y)处最大变化率的方向。其幅值表示为M(x, y)。M(x,y)也是图像,里面的值是梯度,通常称为梯度图像
在这里插入图片描述
梯度向量的分量是微分,所以它们是微分算子。但向量的幅度不是,因为做了平方和平方根操作。另一方面偏微分不是旋转不变的(各向同性),而梯度向量的幅度是旋转不变的。在某些实现中,用绝对值来近似平方和平方根更适合计算。
在这里插入图片描述

一维函数f(x)的一阶微分差分形式:

在这里插入图片描述

罗伯特交叉梯度算子

X的微分
Y的微分
偶数模板不好实现,改进为3*3
X的微分
Y的微分

代码

import numpy as np
from PIL import Image
import cv2

imgfile = "circle.PNG"
OriginalPic = np.array(Image.open(imgfile).convert('L')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值