盲图像去模糊是指在不知道潜在模糊核的情况下恢复潜在的清晰图像。在自然图像上,传统的基于梯度的图像先验去模糊往往失败,这种方法通常倾向于在傅里叶域中的低频信息。
更加复杂的先验有,基于框架的先验[1],基于稀疏编码的先验[2],低秩先验[3]和暗通道先验[4]。
[1]基于框架的先验依赖于自制的小波函数,在异构场景中能力较差。
[5]基于L0范数的先验在本质上是组合的(因此是非凸的),其对L1范数的凸松弛需要敏感的参数调优以获得最优性能。
[2]基于稀疏编码的先验假设了训练集和标签集有一个稳定的相似性,这在实践中可能不存在。
[3]低秩先验需要进行SVD分解,复杂度比较高O(N^3)。
[4]暗通道先验是一种结合L0范数和非线性暗通道计算的综合先验。复杂度也高。
[1] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Framelet-based blind motion de-blurring from a
single image,” IEEE Transactions on Image Processing, vol. 21, no. 2, pp.
[2] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation using patch
priors,” in Proceedings of IEEE International Conference on Computational Photography, 2013.
[3] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M. H. Yang, “Image deblurring via enhanced
low-rank prior,” IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3426–3437, 2016.