盲图像去模糊笔记——非深度学习方法简介,no-kernel, no-DL

本文探讨了盲图像去模糊问题,重点介绍了非深度学习的方法,包括基于梯度、框架、稀疏编码、低秩和暗通道先验等。这些方法在实际应用中各有优缺点,如基于框架的先验在异构场景效果有限,L0范数先验需要精细调参,稀疏编码假设可能不成立,低秩先验计算复杂度高,而暗通道先验则结合了L0范数与非线性计算,但同样存在复杂度问题。
摘要由CSDN通过智能技术生成

盲图像去模糊是指在不知道潜在模糊核的情况下恢复潜在的清晰图像。在自然图像上,传统的基于梯度的图像先验去模糊往往失败,这种方法通常倾向于在傅里叶域中的低频信息。
更加复杂的先验有,基于框架的先验[1],基于稀疏编码的先验[2],低秩先验[3]和暗通道先验[4]。
[1]基于框架的先验依赖于自制的小波函数,在异构场景中能力较差。
[5]基于L0范数的先验在本质上是组合的(因此是非凸的),其对L1范数的凸松弛需要敏感的参数调优以获得最优性能。
[2]基于稀疏编码的先验假设了训练集和标签集有一个稳定的相似性,这在实践中可能不存在。
[3]低秩先验需要进行SVD分解,复杂度比较高O(N^3)。
[4]暗通道先验是一种结合L0范数和非线性暗通道计算的综合先验。复杂度也高。

[1] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Framelet-based blind motion de-blurring from a 
single image,” IEEE Transactions on Image Processing, vol. 21, no. 2, pp.
[2] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation using patch 
priors,” in Proceedings of IEEE International Conference on Computational Photography, 2013.
[3] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M. H. Yang, “Image deblurring via enhanced 
low-rank prior,” IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3426–3437, 2016.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值