基于一阶微分的锐化滤波器---梯度算子(常用于工业检测,产品缺陷检测)


前言

非线性滤波器-----锐化的主要作用:突出图像中的过渡部分用空间微分来完成(微分算子的响应强度与像素的突变程度成成正比),也就是说图像微分,增强了边缘与其他突变(噪声、线),并削弱灰度变化缓慢的区域。

一、常用的非线性锐化滤波器

基于一阶微分的锐化滤波器
基于二阶微分的锐化滤波器

二、图像能够进行微分的要求

一阶微分
在恒定灰度区域的一阶微分值为 0;
在灰度台阶、灰度斜坡的起点处一阶微分值非 0;
沿着灰度斜坡的一阶微分值非 0;

二阶微分:
在恒定灰度区域的二阶微分值为 0;
在灰度台阶、灰度斜坡的起点处二阶微分值非 0;
沿着灰度斜坡的二阶微分值非 0;
对于二维的数字图像 f(x,y) ,可沿着两个空间轴处理偏微分;

三、基于一阶微分的锐化滤波器—梯度算子(常用于工业检测,产品缺陷检测)

在图像中,基于一阶微分的锐化滤波器常用梯度幅值来实现;
对于图像f,在任意坐标(x,y)上的梯度df定义二维列向量:
在这里插入图片描述
梯度幅值定义为:

在这里插入图片描述
在实际应用中,一般把梯度的幅值称为梯度,并采用绝对值近似求梯度值:
在这里插入图片描述

四、如何求解梯度幅值

1、直接微分
在这里插入图片描述
这里的 f 函数是图像对应像素点的灰度值函数

2、交叉差分
在这里插入图片描述
1、2使用较少,sobel算子比较常用

3、sobel算子
在这里插入图片描述
垂直方向
在这里插入图片描述
水平方向
在这里插入图片描述

五、代码

import cv2
import numpy as np
import copy

OriginalImg = cv2.imread('cns.jpg')
R ,G, B = cv2.split(OriginalImg)
#RGB图像拆分成R,G,B三通道数据


G_pad = np.pad(G,((1, 1), (1, 1)),'edge')
#G通道到数据填充
newImg = np.full((700,700),np.nan)
#创建空np数组,用于存储sobel算子处理后的数据
for i in range(1,700):
    for j in range(1,700):
        tmp = copy.copy(G_pad[i-1:i+2,j-1:j+2])
        x = np.multiply(tmp, np.array([[-1,2,-1],[0,0,0],[1,2,1]]))
        y = np.multiply(tmp, np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]))
        dF = abs(np.sum(x)) + abs(np.sum(y))
        newImg[i-1,j-1] = dF

newImg = np.uint8(newImg)
#图像边缘填充

cv2.namedWindow('G')
cv2.resizeWindow('G',(280,280))
cv2.imshow('G',G)

cv2.namedWindow('newImg')
cv2.resizeWindow('newImg',(280,280))
cv2.imshow('newImg',newImg)
cv2.imwrite('sobelImg.jpg',newImg)
cv2.waitKey(0)

总结

提示:这里对文章进行总结:
梯度值正比于邻近像素灰度值的差分,因此在图像变化缓慢区域,其值很小,而在灰度值急剧变化的部分(图像的细节如边缘)其值很大,这就是图像经过梯度计算可使其细节清晰从而达到锐化目的的实质。
| 在这里插入图片描述
|在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

6.11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值