前言
非线性滤波器-----锐化的主要作用:突出图像中的过渡部分用空间微分来完成(微分算子的响应强度与像素的突变程度成成正比),也就是说图像微分,增强了边缘与其他突变(噪声、线),并削弱灰度变化缓慢的区域。
一、常用的非线性锐化滤波器
基于一阶微分的锐化滤波器
基于二阶微分的锐化滤波器
二、图像能够进行微分的要求
一阶微分:
在恒定灰度区域的一阶微分值为 0;
在灰度台阶、灰度斜坡的起点处一阶微分值非 0;
沿着灰度斜坡的一阶微分值非 0;
二阶微分:
在恒定灰度区域的二阶微分值为 0;
在灰度台阶、灰度斜坡的起点处二阶微分值非 0;
沿着灰度斜坡的二阶微分值非 0;
对于二维的数字图像 f(x,y) ,可沿着两个空间轴处理偏微分;
三、基于一阶微分的锐化滤波器—梯度算子(常用于工业检测,产品缺陷检测)
在图像中,基于一阶微分的锐化滤波器常用梯度幅值来实现;
对于图像f,在任意坐标(x,y)上的梯度df定义二维列向量:
梯度幅值定义为:
在实际应用中,一般把梯度的幅值称为梯度,并采用绝对值近似求梯度值:
四、如何求解梯度幅值
1、直接微分
这里的 f 函数是图像对应像素点的灰度值函数
2、交叉差分
1、2使用较少,sobel算子比较常用
3、sobel算子
垂直方向
水平方向
五、代码
import cv2
import numpy as np
import copy
OriginalImg = cv2.imread('cns.jpg')
R ,G, B = cv2.split(OriginalImg)
#RGB图像拆分成R,G,B三通道数据
G_pad = np.pad(G,((1, 1), (1, 1)),'edge')
#G通道到数据填充
newImg = np.full((700,700),np.nan)
#创建空np数组,用于存储sobel算子处理后的数据
for i in range(1,700):
for j in range(1,700):
tmp = copy.copy(G_pad[i-1:i+2,j-1:j+2])
x = np.multiply(tmp, np.array([[-1,2,-1],[0,0,0],[1,2,1]]))
y = np.multiply(tmp, np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]))
dF = abs(np.sum(x)) + abs(np.sum(y))
newImg[i-1,j-1] = dF
newImg = np.uint8(newImg)
#图像边缘填充
cv2.namedWindow('G')
cv2.resizeWindow('G',(280,280))
cv2.imshow('G',G)
cv2.namedWindow('newImg')
cv2.resizeWindow('newImg',(280,280))
cv2.imshow('newImg',newImg)
cv2.imwrite('sobelImg.jpg',newImg)
cv2.waitKey(0)
总结
提示:这里对文章进行总结:
梯度值正比于邻近像素灰度值的差分,因此在图像变化缓慢区域,其值很小,而在灰度值急剧变化的部分(图像的细节如边缘)其值很大,这就是图像经过梯度计算可使其细节清晰从而达到锐化目的的实质。
|
|