https://blog.csdn.net/dongshizhishui/article/details/130079088
https://blog.csdn.net/u014158430/article/details/138913006
Epoch: 训练过程中的迭代次数(即完成了多少个epoch),一个epoch表示整个训练数据集已经被网络前向和反向传播通过一次。一个epoch是训练过程中的一个完整周期,其中模型会尝试学习训练数据集中的所有样本。通常,模型会进行多个epoch的训练,以逐渐优化其性能。
GPU_mem: GPU内存使用情况,也就是图形处理器在训练过程中所使用的内存量。通常是以MB或GB为单位的数字。深度学习模型,特别是像YOLO这样的目标检测模型,通常需要大量的计算资源和内存来进行高效的训练。了解GPU内存使用情况可以帮助开发者避免内存溢出或其他与资源相关的问题。
box_loss: 模型预测出的bounding box的平均损失值,也就是模型预测的边界框与真实边界框之间的差异。在目标检测任务中,模型需要预测目标的准确位置,这通常通过边界框来实现。box_loss用于衡量模型在预测边界框位置时的准确性,并在训练过程中通过反向传播进行优化。
cls_loss: cls_loss代表分类损失,也就是模型在预测目标类别时的错误程度。除了预测目标的位置外,目标检测模型还需要预测目标的类别。cls_loss用于衡量模型在分类任务上的性能,并在训练过程中进行优化。
dfl_loss: dfl_loss可能代表某种特定于模型或实现方式的损失函数,其名称和具体含义可能因不同的YOLO版本或变种而有所不同。通常,这种损失函数可能与模型中的某个特定组件或功能相关。由于