图源:文心一言
本文是我学习高等数学第二、三章导数、微分、中值定理的一些笔记和心得,希望可以与考研路上的小伙伴一起努力上岸~~🥝🥝
- 第1版:查资料、画导图、归纳题型~🧩🧩
参考资料1:《高等数学》同济大学数学系编
参考资料2:《高等数学 基础篇》武忠祥
真题截图:2023考研数学复习辅导 历年考研数学真题 文都考研网 (wendu.com)
审核:BING AI
📇目录
🦮思维导图
- 思维导图为整理同济教材、武老师基础教材所列导数、微分、中值定理的内容,整理有点累哦,有兴趣复习概念的同学可以简单浏览一下~
🍃导数
🍂选填题目
🍂选填题目类型1:导数与微分的概念,分段函数或初等函数是否存在极限
- 计算法:求左导数与右导数,注意求闭区间端点导数可以使用求导公式,但求开区间端点导数即领域点导数时,需要使用左、右导数定义公式。
- 以增量
与定点
计算的公式:
以函数值
与定点
计算的公式:
例题 【2021年 数一 1题】
🍂选填题目类型2:连续、可导、可微的关系
- 一元函数,可导与可微能够互推,证明简述如下:
- 因为:
- 所以:
- 注意:公式中的
与
都是无穷小量,表示近似~
- 一元函数,连续是可导、可微的前提条件;注意,导数存在不一定是可导,例如可去间断点的左极限等于右极限,只能说该点导数存在,不能说可导哦~
- 导数存在的前提条件:该点左、右导数存在且相等;
- 可导的前提条件:该点导数存在且连续;
- 连续不可推可导,同理不可推可微,举栗:
在
。
图源YY的上上签:【高等数学】函数连续、可导、可微_YY的上上签
例题【2020年 数一 2题】
答谢:感谢评论区I Like Doraemon的指正,这道题目确实是选C不是B哈!!😶🌫️😶🌫️
- A、B肯定是不能选的,因为它犯了导数存在就是可导的错误,需要增加连续作为前提;
- C是考试的正确答案,这个等式是导数的高阶无穷小,可以选;
- D这个答案有歧义,在武老师的书上分母是
而不是
,很多网上真题的题目分母是
,解答也是按照
作为分母去验证的。那我们讨论两种情况:
- 假设题目分母是
时,极限变形
,可导表示前面的分式结果存在,后面的分式是无穷,所以没办法保证是无穷,例如f(x)=x时,整个分式就无穷了~
- 假设题目分母是
时,个人觉得也不能选,
,可导表示前面的分式结果存在,且
与
是等价无穷小,且正负号会带来变化,例如:
,经过0点,导数值存在;
,用等价无穷小化简,e^x-1~x,结果为1
,在h(x)的基础上,因正负号不同,结果为+1和-1;
,因为
比
是高阶无穷小,所以结果为0;
- 我们上图表示:
当然,如果我再次说错了欢迎小伙伴在评论区批评留言,博主真的超级感谢!!🙏🙏
🍂计算题目
🍂 计算题目类型1,显函数求导数:
基本初等函数的导数公式
;
;
,特别地
;
,特别地
;
,
;
,
;
,
;
,
;
,
;
有理运算法则
;
;
,
高阶导数有理运算法则
;
; //展开公式对应二项式定理
😶🌫️😶🌫️以下是公式证明简介,个人整理便于记忆公式~
基本初等函数的导数公式证明简述
推导公式是这个:,注意
是无穷小;话说忘记无穷小公式的同学可以看向本系列第一篇博文~
🌸高数笔记01:函数、极限、连续_梅头脑_的博客-CSDN博客
;
;
;
为正整数n时,
代入公式,二项式展开
其中
被消掉,
,其余均乘无穷小
的正整数幂的项为0;
为实数时,
代入,提公因式:
等价无穷小化简:
;
代入公式,提公因式:
等价无穷小公式化简:
,特别地
;
代入,对数性质化简:
等价无穷小:
,
;
代入公式,和差化积展开:
前项为 零x无穷小=0,后项等价无穷小公式化简:
围观大佬们的花式解法,打开崭新世界:sinx求导为什么是cosx? - 知乎
,
;
化为sinx/cosx,采用商的求导法则可证:
,
;
化为1/cosx,采用商的求导法则可证:
,
;
x=siny,利用反函数求导法则可证:
,
;
x=tany,利用反函数求导法则可证:
例题【2015年 数二 10题】高阶函数求导
例题【2022年 数三 13题】复合函数求导
🍂 计算题目类型2,隐函数求导数:
【直角方程】
- 普通函数:恒等式左右两边求导,得到
;
- 幂指函数:
可以化为对数
求导。
【参数方程】
一阶可导:根据复合函数与反函数的求导法则,
二阶可导:根据复合函数与反函数的求导法则,
注意:参数方程是近年的高频考点,求二阶导数容易只写
,遗漏
;因为这是对t求导二阶导数,而不是对x求二阶导数,所以在商导时要记住分母x的方程也含有t哦~~
例题【2020年 数一 13题】参数函数求导
🍃微分中值定理
🍂基本介绍
这里省略复杂的定义[毕竟已经在思维导图中写过一遍啦],借图快速复习~
图源Curren:高数第3章 微分中值定理及导数应用 - 知乎 (zhihu.com)
罗尔中值定理简述:区间端点A、B相等,连续曲线f(x),区间内总有1点[记为
]的切线斜率=0;
拉格朗日中值定理简述:区间端点A、B,连续曲线f(x),区间内总有1点[记为
]的切线斜率为=区间端点AB连线斜率;
柯西中值定理简述:可以近似看作参数方程版本的拉格朗日中值定理;当F(x)=x时,柯西中值定理便转化为拉格朗日中值定理~
🍂证明题目
🍂证明题目类型1,求方程的根
- 证明有根存在:
- 适合方程系数已知或可以估算f(x)的极限正负值:找出方程f(a)>0及f(b)<0的两点,根据零点定理可证明方程在(a,b)有根;[零点定理在本系列第一章有介绍]
- 适合方程系数未知或可以推算F(x)在两点处为零:记F’(x)=f(x),根据题目条件,找到a、b两点使F(a)=F(b),根据罗尔定理可证明F’(x)即f(x)在(a,b)有根;
- 证明根的个数:
- 将方程记为函数,求导,解出f’(x)=0的点,根据方程单调性判定根的个数~
🍂证明题目类型2,证明不等式
- 两个常见结论
,在证明第一个重要极限时采用几何法证明:
- 画1/4单位圆,OA的长度为1,设角度DOB为x,则弧线AC根据弧长公式为x,AB为sinx,AD为tanx[🌸数学中的tan是什么意思?_百度知道 (baidu.com)],由S▲OBA<S扇形OBA<S▲OCD可推结论~
- 图源cabrnary:两个重要极限- 知乎 (zhihu.com)
,证明过程如下:
- 根据题目条件,可以设公式
,并能够确定区间
;
列拉格朗日中值定理的等式:
,并同时可求出
;
将函数值,导数值代回拉格朗日中值定理的等式:
代入端点值,原题可证。
例题【2022年 数一 4题】
🍂证明题目类型3,中值定理证明
- 构造辅助函数,通过证明辅助函数的中值定理来间接证明原函数的中值定理;
- 采用反证法,假设结论不成立,然后推出矛盾,从而证明结论成立;
- 利用函数的单调性、凸凹性、极值等性质,结合中值定理的条件进行证明;
- 将原函数进行泰勒展开,利用展开式中的多项式性质,结合中值定理的条件进行证明。
例题【2013年 数三 10题】
🍃函数的应用
🍂选填题目
🍂选填题目类型1:计算渐近线
- 水平渐近线:
- 铅直渐近线:
斜渐近线:
例题【2023年 数一 1题】计算渐近线
🍂选填题目类型2:导数的几何意义:切线方程、法线方程
- 计算切线斜率与法线斜率,然后使用点斜式列直接方程:
- 直角坐标:
斜线斜率:
法线斜率:
- 参数方程:
切线斜率:
- 极坐标方程:和我一样傻傻不会求极坐标方程的小伙伴可以转参数方程
转化方程:
- 计算弧长与曲率公式:
🍂解答题目
🍂解答题目类型1:计算驻点、拐点、最值点,证明不等式
- 单调区间:
- 极值:
- 最值:
图源无忧文档: 导数应用之极值与最值 学案_word文档在线阅读与下载_无忧文档
- 凹凸区间:
图源360:函数的凹凸性_360百科
例题【2022年 数一 20题】证明不等式
这个题对我来说还是有难度的:根据题目条件写出F(x),求导,这个可能大部分小伙伴都想得到;抽象函数使用拉格朗日定理证明端点值<区间值,推出F’(x)<0,感觉这个就需要一点技巧性了~
🔚结语
文末分享我在这篇博文中用到的宝藏网页——
本系列的其它博文:
博文到此结束,写得模糊或者有误之处,欢迎小伙伴留言讨论与批评,督促博主优化内容{例如有错误、难理解、缺例题}等~😶🌫️
博文若有帮助,欢迎小伙伴动动可爱的小手默默给个赞支持一下,博主肝文的动力++~🌟🌟