微分方程(Blanchard Differential Equations 4th)中文版Section1.5

解的存在唯一性

什么叫做解的存在性?

我们已经见识过分析法、定性分析法和数值方法来研究微分方程的解。然而,我们尚未考虑一个问题:我们怎么知道解是存在的?尽管这似乎是一个微妙且抽象的问题,但它也是一个极为重要的问题。如果微分方程的解不存在,那么试图找到或近似它们就毫无意义。更重要的是,如果微分方程被用来模拟一个物理系统,但其解不存在,那么我们就应该对该模型的有效性产生严重怀疑。

为了理解解的存在性是什么意思,考虑以下代数方程:
2 x 5 − 10 x + 5 = 0. 2x^5 - 10x + 5 = 0. 2x510x+5=0.
这个方程的解是使左边表达式为零的 x x x 值。换句话说,它是五次多项式 2 x 5 − 10 x + 5 2x^5 - 10x + 5 2x510x+5 的根。我们可以轻松计算出,当 x = 1 x = 1 x=1 时,左边的表达式值为 − 3 -3 3,而当 x = − 1 x = -1 x=1 时,值为 13 13 13。由于多项式是连续的,因此在 x = − 1 x = -1 x=1 x = 1 x = 1 x=1 之间一定有一个 x x x 值使得左边的表达式为零。因此,我们已经确定在 x = − 1 x = -1 x=1 x = 1 x = 1 x=1 之间至少存在这个方程的一个解。我们并没有构造出这个 x x x 值,也没有对其进行精确的近似(除了说它在 − 1 -1 1 1 1 1 之间)。不幸的是,没有类似“二次公式”的方法来找到五次多项式的根,所以无法写出这个方程解的精确值。但这并不会让我们对解的存在性有任何怀疑。这里的要点是,我们可以在不计算解的情况下讨论解的存在性。
同样,有可能在 − 1 -1 1 1 1 1 之间存在不止一个解。换句话说,解可能不是唯一的。

以同样的方式,如果我们给定一个初值问题
d y d t = f ( t , y ) , y ( 0 ) = y 0 , \frac{dy}{dt} = f(t, y), \quad y(0) = y_0, dtdy=f(t,y),y(0)=y0,
我们可以问是否存在一个解。这与询问解是什么或它的图像是什么样子是不同的问题。我们可以在不知道解的公式的情况下说解是存在的,就像我们可以说上述代数方程在 − 1 -1 1 1 1 1 之间有解,即使我们不知道它的精确值或近似值。

存在性

幸运的是,关于微分方程解的存在性问题已经得到了广泛的研究,并且取得了一些非常好的结果。对于我们的目的,我们将使用标准的存在性定理。

存在性定理 假设 f ( t , y ) f(t, y) f(t,y) 是一个在 t y ty ty-平面中的矩形区域 { ( t , y ) ∣ a < t < b , c < y < d } \{(t, y) | a < t < b, c < y < d\} {(t,y)a<t<b,c<y<d} 内连续的函数。如果 ( t 0 , y 0 ) (t_0, y_0) (t0,y0) 是这个矩形区域中的一点,那么存在一个 ϵ > 0 \epsilon > 0 ϵ>0 和一个定义在 t 0 − ϵ < t < t 0 + ϵ t_0 - \epsilon < t < t_0 + \epsilon t0ϵ<t<t0+ϵ 上的函数 y ( t ) y(t) y(t),它可以解如下的初值问题:
d y d t = f ( t , y ) , y ( t 0 ) = y 0 . \frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0. dtdy=f(t,y),y(t0)=y0.
这个定理告诉我们,只要微分方程右边的函数是合理的,那么解是存在的。(它并没有排除在 f ( t , y ) f(t, y) f(t,y) 不是一个“好”函数的情况下,解可能存在的可能性,但它也不保证这种情况下解的存在性。)
这让人感到放心。当我们研究一个合理的初值问题的解时,确实有东西可以研究。
给定一个初值问题 d y d t = f ( t , y ) , y ( t 0 ) = y 0 \frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0 dtdy=f(t,y),y(t0)=y0,存在性定理保证了解的存在性。如果你仔细阅读这个定理(像律师寻找漏洞一样仔细),你会发现解的定义域可能非常小。定理指出存在一个 ϵ > 0 \epsilon > 0 ϵ>0,并且解的定义域包括开区间 ( t 0 − ϵ , t 0 + ϵ ) (t_0 - \epsilon, t_0 + \epsilon) (t0ϵ,t0+ϵ)。这个 ϵ \epsilon ϵ 可能非常非常小,因此尽管定理保证了解的存在性,但它可能仅在一个非常短的时间区间内定义。
不幸的是,这是一项严苛但必要的限制。考虑如下的初值问题:
d y d t = 1 + y 2 , y ( 0 ) = 0. \frac{dy}{dt} = 1 + y^2, \quad y(0) = 0. dtdy=1+y2,y(0)=0.
在这个方程的斜率场中,随着 y y y 的增加,斜率变得非常陡峭(见图 1.43)。因此,随着 y ( t ) y(t) y(t) 增加, d y d t \frac{dy}{dt} dtdy 也会越来越快地增加。
在这里插入图片描述随着 t t t 增加,解可能会“爆炸”(即迅速趋向无穷大)。通过观察斜率场中描绘的解,我们无法确定解是否会在有限时间内爆炸,还是会在所有时间内保持有限,因此我们需要尝试使用解析方法。

这是一个自治方程,因此我们可以像往常一样分离变量并进行积分。我们有:
∫ 1 1 + y 2   d y = ∫ d t . \int \frac{1}{1 + y^2} \, dy = \int dt. 1+y21dy=dt.
积分得到:
arctan ⁡ y = t + c , \arctan y = t + c, arctany=t+c,
其中 c c c 是一个任意常数。因此,
y ( t ) = tan ⁡ ( t + c ) , y(t) = \tan(t + c), y(t)=tan(t+c),
这就是微分方程的通解。使用初始值 y ( 0 ) = 0 = tan ⁡ ( 0 + c ) y(0) = 0 = \tan(0 + c) y(0)=0=tan(0+c),我们发现 c = 0 c = 0 c=0(或者对于任意整数 n n n c = n π c = n\pi c=)。因此,这个特解是 y ( t ) = tan ⁡ t y(t) = \tan t y(t)=tant,并且这个特解的定义域是 − π 2 < t < π 2 -\frac{\pi}{2} < t < \frac{\pi}{2} 2π<t<2π。正如我们从图 1.44 中看到的,我们的担忧是有道理的。这个特解的图像在 t = ± π 2 t = \pm \frac{\pi}{2} t=±2π 处有垂直渐近线。当 t t t 从左侧趋近 π 2 \frac{\pi}{2} 2π 和从右侧趋近 − π 2 -\frac{\pi}{2} 2π 时,解会爆炸。如果这个微分方程是一个物理系统的模型,那么我们会预期该系统在 t t t 趋近 π 2 \frac{\pi}{2} 2π 时会失效。
在这里插入图片描述图 1.43 显示的是方程 d y d t = 1 + y 2 \frac{dy}{dt} = 1 + y^2 dtdy=1+y2 的斜率场。注意到,如果 y y y 略微为正或略微为负,斜率就会变得非常大。在这两种情况下,解都会迅速增加。
在这里插入图片描述图 1.44 显示了满足初始条件 y ( 0 ) = 0 y(0) = 0 y(0)=0 的解 y ( t ) = tan ⁡ t y(t) = \tan t y(t)=tant 的图像,以及方程 d y d t = 1 + y 2 \frac{dy}{dt} = 1 + y^2 dtdy=1+y2 的斜率场。当 t t t 从左侧趋近 π 2 \frac{\pi}{2} 2π 时, y ( t ) = tan ⁡ t y(t) = \tan t y(t)=tant 趋向 ∞ \infty 。当 t t t 从右侧趋近 − π 2 -\frac{\pi}{2} 2π 时, y ( t ) = tan ⁡ t y(t) = \tan t y(t)=tant 趋向 − ∞ -\infty

在有限时间内爆炸(或下降)的解是一种常见现象。许多看似简单的微分方程的解在有限时间内趋向于无穷大,因此我们应始终警惕这种可能性。

唯一性

当处理形如
d y d t = f ( t , y ) , y ( t 0 ) = y 0 , \frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0, dtdy=f(t,y),y(t0)=y0,
的初值问题时,我们通常会说“考虑这个解”。根据存在性定理,我们知道解是存在的,但我们如何知道只有一个解?为什么我们不需要说“考虑一个解”而是“考虑这个解”?换句话说,我们如何知道解是唯一的?

从理论和实际的角度来看,知道初值问题的解是唯一的是非常有价值的。如果解不是唯一的,那么即使在进行数值或定性分析时,我们也需要考虑所有可能的解。不同的解可能会对系统的运行给出完全不同的预测。幸运的是,有一个非常好的定理保证初值问题的解是唯一的。
唯一性定理 假设 f ( t , y ) f(t, y) f(t,y) ∂ f ∂ y \frac{\partial f}{\partial y} yf t y ty ty 平面中形如 { ( t , y )   ∣   a < t < b , c < y < d } \{(t, y)\,|\, a < t < b, c < y < d\} {(t,y)a<t<b,c<y<d} 的矩形区域内是连续函数。如果 ( t 0 , y 0 ) (t_0, y_0) (t0,y0) 是该矩形区域内的一个点,并且 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t) 是两个解满足初值问题
d y d t = f ( t , y ) , y ( t 0 ) = y 0 \frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0 dtdy=f(t,y),y(t0)=y0
在区间 t 0 − ϵ < t < t 0 + ϵ t_0 - \epsilon < t < t_0 + \epsilon t0ϵ<t<t0+ϵ(其中 ϵ \epsilon ϵ 是某个正数)的所有 t t t 上成立,那么有
y 1 ( t ) = y 2 ( t ) y_1(t) = y_2(t) y1(t)=y2(t)
在区间 t 0 − ϵ < t < t 0 + ϵ t_0 - \epsilon < t < t_0 + \epsilon t0ϵ<t<t0+ϵ 上,即初值问题的解是唯一的。
在应用唯一性定理之前,我们应强调存在性定理和唯一性定理都有前提条件——在使用这些定理之前必须满足的条件。在我们说初值问题
d y d t = f ( t , y ) , y ( t 0 ) = y 0 \frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0 dtdy=f(t,y),y(t0)=y0
的解存在且唯一之前,必须检查 f ( t , y ) f(t, y) f(t,y) 是否满足这些必要的前提条件。我们经常将这两个定理合并在一起(使用唯一性定理的更严格的前提条件),并将其称为存在性和唯一性定理

唯一性缺失

构造一个没有解的合理微分方程是相当困难的。然而,找到 f ( t , y ) f(t, y) f(t,y) 是一个体面函数但唯一性失败的例子并不难。(当然,在这些例子中, f ( t , y ) f(t, y) f(t,y) ∂ f ∂ y \frac{\partial f}{\partial y} yf 并不连续。)

例如,考虑以下微分方程:
d y d t = 3 y 2 / 3 . \frac{dy}{dt} = 3y^{2/3}. dtdy=3y2/3.
其右边在整个 t y ty ty 平面上是连续函数。不幸的是,当 y = 0 y = 0 y=0 时, y 2 / 3 y^{2/3} y2/3 关于 y y y 的偏导数不存在,因此唯一性定理并不能告诉我们关于初值问题 y ( t 0 ) = 0 y(t_0) = 0 y(t0)=0 的解的数量。

让我们应用之前讨论过的定性和解析技术。首先,如果我们寻找平衡解,可以看到函数 y ( t ) = 0 y(t) = 0 y(t)=0 对于所有 t t t 都是一个解。其次,我们注意到这个方程是可分离的,因此我们分离变量并得到:
∫ y − 2 / 3   d y = ∫ 3   d t . \int y^{-2/3} \, dy = \int 3 \, dt. y2/3dy=3dt.
积分后,我们得到解:
y ( t ) = ( t + c ) 3 , y(t) = (t + c)^3, y(t)=(t+c)3,
其中 c c c 是一个任意常数。

现在考虑初值问题:
d y d t = 3 y 2 / 3 , y ( 0 ) = 0. \frac{dy}{dt} = 3y^{2/3}, \quad y(0) = 0. dtdy=3y2/3,y(0)=0.
一个解是平衡解 y 1 ( t ) = 0 y_1(t) = 0 y1(t)=0 对于所有 t t t 都成立。然而,通过分离变量后设 c = 0 c = 0 c=0,我们得到第二个解 y 2 ( t ) = t 3 y_2(t) = t^3 y2(t)=t3。因此,对于相同的初值问题,我们有两个解: y 1 ( t ) = 0 y_1(t) = 0 y1(t)=0 y 2 ( t ) = t 3 y_2(t) = t^3 y2(t)=t3(见图 1.45)。
在这里插入图片描述 图 1.45 斜率场以及初值问题 d y d t = 3 y 2 / 3 , y ( 0 ) = 0. \frac{dy}{dt} = 3y^{2/3}, \quad y(0) = 0. dtdy=3y2/3,y(0)=0. 的两个解的图形。这一微分方程在 y = 0 y = 0 y=0 时不满足唯一性定理的假设。注意我们有两个不同的解,其图形在 ( 0 , 0 ) (0, 0) (0,0) 处相交。

唯一性定理的应用

唯一性定理表明,对于相同的初值问题,两个解是相同的。这一结果令人放心,但在实际应用中可能不显得很有用。以下我们讨论一些例子来说明这个定理实际上是非常有用的。

假设 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t) 都是微分方程
d y d t = f ( t , y ) , \frac{dy}{dt} = f(t, y), dtdy=f(t,y),
的解,其中 f ( t , y ) f(t, y) f(t,y) 满足唯一性定理的假设。如果对于某个 t 0 t_0 t0 y 1 ( t 0 ) = y 2 ( t 0 ) y_1(t_0) = y_2(t_0) y1(t0)=y2(t0),那么这两个函数都是同一个初值问题
d y d t = f ( t , y ) , y ( t 0 ) = y 1 ( t 0 ) = y 2 ( t 0 ) . \frac{dy}{dt} = f(t, y), \quad y(t_0) = y_1(t_0) = y_2(t_0). dtdy=f(t,y),y(t0)=y1(t0)=y2(t0).
的解。唯一性定理保证了 y 1 ( t ) = y 2 ( t ) y_1(t) = y_2(t) y1(t)=y2(t),至少对于所有这两个解都定义的 t t t 值。我们可以将唯一性定理表述为:
“如果两个解在同一时刻处于同一位置,那么它们是同一个函数。”
这种形式的唯一性定理非常有价值,正如以下例子所示。

平衡解的作用

考虑初值问题:

d y d t = ( y 2 − 4 ) ( sin ⁡ 2 y 3 + cos ⁡ y − 2 ) 2 , y ( 0 ) = 1 2 . \frac{dy}{dt} = \frac{(y^2 - 4)(\sin^2 y^3 + \cos y - 2)}{2}, \quad y(0) = \frac{1}{2}. dtdy=2(y24)(sin2y3+cosy2),y(0)=21.

求解这个方程的显式解并不容易,因为尽管方程是自治的,因此是可分离的,但涉及的积分非常困难(尝试计算这些积分)。另一方面,如果 y = 2 y = 2 y=2,方程的右侧为零。因此,常数函数 y 1 ( t ) = 2 y_1(t) = 2 y1(t)=2 是该方程的一个平衡解。
假设 y 2 ( t ) y_2(t) y2(t) 是满足初始条件 y 2 ( 0 ) = 1 2 y_2(0) = \frac{1}{2} y2(0)=21 的微分方程的解。唯一性定理意味着 y 2 ( t ) < 2 y_2(t) < 2 y2(t)<2 对于所有 t t t 都成立,因为 y 2 ( t ) y_2(t) y2(t) 的图像不能与常数解 y 1 ( t ) = 2 y_1(t) = 2 y1(t)=2 的图像相交(见图 1.46)。
在这里插入图片描述图 1.46 方程 d y d t = ( y 2 − 4 ) ( sin ⁡ 2 y 3 + cos ⁡ y − 2 ) 2 \frac{dy}{dt} = \frac{(y^2 - 4)(\sin^2 y^3 + \cos y - 2)}{2} dtdy=2(y24)(sin2y3+cosy2)的斜率场图像,其中有两条积分曲线解貌似相交,事实上,存在唯一性定理保证两条积分曲线之间并非重合。
这条观察并没有提供太多关于初值问题 y ( 0 ) = 1 2 y(0) = \frac{1}{2} y(0)=21 的解的信息。然而,我们并没有花费太多的工作就获得了这些信息。识别 y 1 ( t ) = 2 y_1(t) = 2 y1(t)=2 作为一个解是相对简单的,其他的信息则由唯一性定理得出。通过稍微做一些工作,我们就能获得一些信息。

如果我们关心的仅仅是原初值问题的解可能变得多么大,那么解被 y = 2 y = 2 y=2 上界约束的事实可能就足够了。如果我们需要更详细的信息,就必须更加仔细地审视方程。

比较解

我们还可以通过将解与“已知”解进行比较来获取有关解的信息。例如,考虑微分方程
d y d t = ( 1 + t ) 2 ( 1 + y ) 2 . \frac{dy}{dt} = \frac{(1 + t)^2}{(1 + y)^2}. dtdy=(1+y)2(1+t)2.
很容易检查到 y 1 ( t ) = t y_1(t) = t y1(t)=t 是这个微分方程的一个解,初始条件为 y 1 ( 0 ) = 0 y_1(0) = 0 y1(0)=0。如果 y 2 ( t ) y_2(t) y2(t) 是满足初始条件 y ( 0 ) = − 0.1 y(0) = -0.1 y(0)=0.1 的解,那么 y 2 ( 0 ) < y 1 ( 0 ) y_2(0) < y_1(0) y2(0)<y1(0),因此 y 2 ( t ) < y 1 ( t ) y_2(t) < y_1(t) y2(t)<y1(t) 对于所有 t t t 成立。因此 y 2 ( t ) < t y_2(t) < t y2(t)<t 对于所有 t t t 都成立(见图 1.47)。同样,这仅仅是关于初值问题解的一点信息,但我们所做的工作也仅仅是一些。
在这里插入图片描述图 1.47 微分方程 d y d t = ( 1 + t ) 2 ( 1 + y ) 2 \frac{dy}{dt} = \frac{(1 + t)^2}{(1 + y)^2} dtdy=(1+y)2(1+t)2的两个解 y 1 ( t ) y_1(t) y1(t) y 2 ( t ) y_2(t) y2(t) 的图像。满足初始条件 y 1 ( 0 ) = 0 y_1(0) = 0 y1(0)=0 的解 y 1 ( t ) y_1(t) y1(t) 的图像是对角线,而满足初始条件 y 2 ( 0 ) = − 0.1 y_2(0) = -0.1 y2(0)=0.1 的解 y 2 ( t ) y_2(t) y2(t) 的图像必须位于对角线以下。

唯一性与定性分析

在某些情况下,我们可以利用唯一性定理和一些定性信息来提供关于解的更精确信息。例如,考虑微分方程
d y d t = ( y − 2 ) ( y + 1 ) \frac{dy}{dt} = (y - 2)(y + 1) dtdy=(y2)(y+1)
这个自治方程的右侧是函数 f ( y ) = ( y − 2 ) ( y + 1 ) f(y) = (y - 2)(y + 1) f(y)=(y2)(y+1)。注意到 f ( 2 ) = f ( − 1 ) = 0 f(2) = f(-1) = 0 f(2)=f(1)=0。因此, y = 2 y = 2 y=2 y = − 1 y = -1 y=1 是平衡解(参见图 1.48 中的斜率场)。根据存在性和唯一性定理,任何解 y ( t ) y(t) y(t) 其初始条件 y ( 0 ) y(0) y(0) 满足 − 1 < y ( 0 ) < 2 -1 < y(0) < 2 1<y(0)<2,则该解 y ( t ) y(t) y(t) 必须在所有时间 t t t 内都满足 − 1 < y ( t ) < 2 -1 < y(t) < 2 1<y(t)<2
在这里插入图片描述在这个例子中,我们可以进一步了解这些解。例如,考虑初始条件为 y ( 0 ) = 0.5 y(0) = 0.5 y(0)=0.5 的解。不仅我们知道对于所有 t t t − 1 < y ( t ) < 2 -1 < y(t) < 2 1<y(t)<2,而且因为这个方程是自治的, d y d t \frac{dy}{dt} dtdy 的符号仅取决于 y y y 的值。当 − 1 < y < 2 -1 < y < 2 1<y<2 时, d y d t = f ( y ) < 0 \frac{dy}{dt} = f(y) < 0 dtdy=f(y)<0。因此,初始条件为 y ( 0 ) = 0.5 y(0) = 0.5 y(0)=0.5 的解 y ( t ) y(t) y(t) 在所有 t t t 上都满足 d y d t < 0 \frac{dy}{dt} < 0 dtdy<0。于是这个解在所有时间 t t t 上都是递减的。
由于该解在所有 t t t 上都是递减的,并且始终保持在 y = − 1 y = -1 y=1 之上,我们可能会猜测 y ( t ) y(t) y(t) 随着 t → ∞ t \to \infty t 趋向 y ( t ) → − 1 y(t) \to -1 y(t)1。事实上,这正是实际发生的情况。如果 y ( t ) y(t) y(t) t → ∞ t \to \infty t 时趋向于大于 − 1 -1 1 的某个值 y 0 y_0 y0,那么当 t t t 非常大时, y ( t ) y(t) y(t) 必须接近 y 0 y_0 y0。但由于 − 1 < y 0 < 2 -1 < y_0 < 2 1<y0<2 f ( y 0 ) f(y_0) f(y0) 为负值。因此,当 y ( t ) y(t) y(t) 接近 y 0 y_0 y0 时,我们有 d y d t \frac{dy}{dt} dtdy 接近 f ( y 0 ) f(y_0) f(y0),这也是负值,因此解必须继续减小并超越 y 0 y_0 y0。也就是说,这个微分方程的解只能渐近于平衡解。
我们可以勾画出这个初值问题的解的图像。对于所有 t t t,图像位于 y = − 1 y = -1 y=1 y = 2 y = 2 y=2 之间,并且对于所有 t t t 它都是递减的(见图 1.49)。
在这里插入图片描述图 1.49 显示了平衡解的图像以及初始条件 y ( 0 ) = 0.5 y(0) = 0.5 y(0)=0.5 的解对于微分方程 d y d t = ( y − 2 ) ( y + 1 ) \frac{dy}{dt} = (y - 2)(y + 1) dtdy=(y2)(y+1) 的图像。

唯一性与数值近似

如前述例子所示,唯一性定理为我们提供了解的行为方面的定性信息。我们可以利用这些信息来检查解的数值近似的行为。如果解的数值近似违反了唯一性定理,那么我们可以确定某些地方出了问题。
图 1.50 显示了初值问题

d y d t = e t sin ⁡ y , y ( 0 ) = 5 \frac{dy}{dt} = e^t \sin y, \quad y(0) = 5 dtdy=etsiny,y(0)=5

t = 0.05 t = 0.05 t=0.05 时,使用欧拉法对解的近似的图像。如在 1.4 节中提到的,这种行为看起来很不稳定,因此我们对其产生了怀疑。
在这里插入图片描述图 1.50 欧拉法应用于 d y d t = e t sin ⁡ y \frac{dy}{dt} = e^t \sin y dtdy=etsiny t = 0.05 t = 0.05 t=0.05 时,图像的近似在 t < 5 t < 5 t<5 时表现如预期,但在 t t t 略大于 5 5 5 时,近似结果不再有效。

我们可以很容易地验证,常数函数 y ( t ) = n π y(t) = n\pi y(t)= 对于任意整数 n n n 都是一个解。因此,根据唯一性定理,每个解都被限制在 y = n π y = n\pi y= y = ( n + 1 ) π y = (n + 1)\pi y=(n+1)π 之间(对于某个整数 n n n)。图 1.50 中的近似违反了这一要求,这证实了我们对该数值结果不可信的怀疑。这个方程比较特殊,因为右边有 e t e^t et 项。当 t t t 变大时,解的斜率变得非常大,因此即使步长非常小,欧拉法也会偏离真实解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值