3D图像线性插值算法实现

3D图像线性插值算法实现

  1. 三线性插值原理
    三线性插值原理与双线性插值原理类似,双线性插值是根据周围四个点计算得到新的插值点,三线性插值是对一个立方体中周围8个顶点进行计算。

在这里插入图片描述
1)首先在x轴上进行插值,根据以下公式分别求出4个边上的点C00,C01,C10,C11
在这里插入图片描述
2)在y轴上进行插值,根据一下公式得到C0和C1点
在这里插入图片描述
3)最后在z轴上进行插值
在这里插入图片描述
其中xd, yd,zd是指偏移量,与x,y,z较小的坐标有关。xd = x - |xd|
实际上三线性插值等同于两个双线性插值与线性插值的组合。当前这样计算起来很麻烦,所以使用另一个方案进行编写插值算法。

  1. 替代算法
    在这里插入图片描述
    求解方程线性找到系数通过
    直接看结果吧,反正我也推不出来
    在这里插入图片描述
  2. 算法实现
import numpy as np
import math

def Interpolation3D(src_img, dst_size)#srcImage原3d图像,dst_size插值后图像的大小
    srcZ, srcY, srcX = src_img.shape   #原图图像大小
    dst_img = np.zeros(shape = dst_size, dtype = np.int16)  #插值后的图像

    new_Z, new_Y, new_X = dst_img.shape  #
    print("插值后图像的大小", dst_img.shape)

    factor_z = srcZ / new_Z
    factor_y = srcY / new_Y
    factor_x = srcX / new_X

    for z in range(new_Z):
        for y in range(new_Y):
            for x in range(new_X):

                src_z = z * factor_z
                src_y = y * factor_y
                src_x = x * factor_x

                src_z_int = math.floor(z * factor_z)
                src_y_int = math.floor(y * factor_y)
                src_x_int = math.floor(x * factor_x)

                w = src_z - src_z_int
                u = src_y - src_y_int
                v = src_x - src_x_int

                # 判断是否查出边界
                if src_x_int + 1 == dimX or src_y_int + 1 == dimY or src_z_int + 1 == dimZ:
                    dst_img[z, y , x] = src_img[src_z_int, src_y_int, src_x_int]

                else:

                    C000 = src_img[src_z_int, src_y_int, src_x_int]
                    C001 = src_img[src_z_int, src_y_int, src_x_int + 1]
                    C011 = src_img[src_z_int, src_y_int + 1, src_x_int + 1]
                    C010 = src_img[src_z_int, src_y_int + 1, src_x_int]
                    C100 = src_img[src_z_int + 1, src_y_int, src_x_int]
                    C101 = src_img[src_z_int + 1, src_y_int, src_x_int + 1]
                    C111 = src_img[src_z_int + 1, src_y_int + 1, src_x_int + 1]
                    C110 = src_img[src_z_int + 1, src_y_int + 1, src_x_int]
                    dst_img[z ,y ,x] = C000 * (1 - v)* (1 - u) * (1 - w) + \
                                       C100 * v * (1 - u) * (1 - w) + \
                                       C010 * (1- v) * u * (1 - w) + \
                                       C001 * (1 - v) * (1 - u) * w + \
                                       C101 * v * (1 - u) * w + \
                                       C011 * (1 - v) * u * w + \
                                       C110 * v * u * (1 - w) + \
                                       C111 * v * u * w
    
    return dst_img

完整代码请查看https://download.csdn.net/download/weixin_42795611/13766968

CT 断层图像三维重建是指通过医学诊断仪获取连续的二维切面图像,然后将这 些二维图像之间的位置和灰度信息输入计算机,在计算机上进行相应的组合和处理, 最后在显示器上再现人体该器官的立体影像并描绘出器官的三维图像信息。 CT 断层图像三维重建能为医生显示具有真实感的三维图形,便于他们从多角度、 多层次进行观察和分析。本文具体研究了医学图像三维重建所涉及的关键技术之一— —插值技术,提出了适合于 CT 断层图像重建的轮廓形状插值算法,同时通过将该算 法应用到 CT 断层图像三维重建系统中验证其合理性与有效性。 断层图像插值三维重建过程中的一个必要环节。本文对传统的插值方法进行了 归类,分为灰度插值、形状插值和小波插值三种,通过对这些方法中常用算法的分析 和比较,在实验的基础上讨论了各种算法的优缺点及适用范围,提出了一种基于轮廓 形状的 CT 断层图像插值算法。 本文将 CT 断层图像三维重建系统划分为数据获取模块、数据预处理模块、图 像插值模块、绘制模块和显示模块,并使用相关技术实现了各模块的功能。在详细叙 述插值模块的设计与实现的基础上,将基于轮廓形状的插值算法和其它一些插值算法 应用于系统中进行比较。实验结果表明基于轮廓形状的插值算法能够比较好地保持图 像的边缘轮廓,有效地解决了梯田效应问题,为医学教学以及临床诊断治疗提供了比 较好的辅助。 论文最后对所作的工作进行了总结,并展望了下一步的研究工作。 关键词:CT 断层图像三维重建,插值技术,轮廓形状
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生米生花@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值