基于深度学习的图像边缘和轮廓提取

这篇博客汇总了深度学习在图像边缘检测领域的最新进展,包括论文、开源代码和数据集。介绍了HED(整体嵌套边缘检测)在OpenCV中的实现,以及多种边缘检测方法,如STEdge、PixelDifferenceNetworks等。此外,还讨论了边缘检测的评价指标ODS和OIS,并列举了不同类型的边缘。博客提供了各种资源链接,便于进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

边缘检测论文简读、开源代码和数据集合集
Awesome-Edge-Detection-Papers
基于深度学习的图像边缘检测算法综述
边缘与轮廓的关系

数据集

http://mftp.mmcheng.net/liuyun/rcf/data/HED-BSDS.tar.gz
http://mftp.mmcheng.net/liuyun/rcf/data/PASCAL.tar.gz
http://mftp.mmcheng.net/liuyun/rcf/data/NYUD.tar.gz

OpenCV中基于深度学习的边缘检测

OpenCV在其全新(OpenCV 3.4.3或更高版本)的DNN模块中集成了基于深度学习的边缘检测技术。这种技术被称为整体嵌套边缘检测或HED,是一种基于学习的端到端边缘检测系统,使用修剪过的类似vgg的卷积神经网络进行图像到图像的预测任务。HED利用了中间层的输出称为side output,将所有5个卷积层的输出进行融合,生成最终的预测。由于在每一层生成的特征图大小不同,它可以有效地以不同的尺度查看图像。HED方法不仅比其他基于深度学习的方法更准确,而且速度也比其他方法快得多。
在这里插入图片描述

论文

1、基于深度学习方法

在这里插入图片描述
在这里插入图片描述

1.1一般边缘检测

Pixel Difference Networks for Efficient Edge Detection
在这里插入图片描述

1.2目标轮廓检测

Object Contour Detection with a Fully Convolutional Encoder-Decoder Network
在这里插入图片描述

1.3语义边缘检测

CASENet: Deep Category-Aware Semantic Edge Detection

在这里插入图片描述

1.4闭合边界检测

DOOBNet: Deep Object Occlusion Boundary Detection from an Image
在这里插入图片描述

1.5 实例边缘检测

End-to-End Instance Edge Detection
在这里插入图片描述

2、传统方法

2.1 基于梯度和拉布拉斯

在这里插入图片描述
在这里插入图片描述

2.2 基于人工特征提取

如多尺度特征边缘检测算法、结构化边缘检测算法

2.3 论文

在这里插入图片描述

3 评价指标ODS、OIS

模型输出一个边缘概率图(edge probability map),需要一个阈值来得到二值边缘图(binary edge map),有两种方式来设置这个阈值,一种ODS(optimal dataset scale)即固定的阈值,使得整个数据集的F-score最大,另一种是OIS(optimal image scale),每一张图片,选取不同的阈值,使得F-score最大。
人力类视觉ODS为0.803

在这里插入图片描述

4 边缘类型

分为4种类型,阶跃型、斜坡型、脉冲型、屋脊型
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值