Distribution

Random Variable

c d f : ‾ \underline{cdf:} cdf:cumulative distribution function F ( x ) = P ( X ≤ x ) F(x)=P(X \leq x) F(x)=P(Xx)
p m f : ‾ \underline{pmf:} pmf:probability mass function(for discrete probability distribution )
(1) p ( x ) ≥ 0 , x ∈ X p(x) \geq0,x \in X p(x)0,xX
(2) ∑ x ∈ X P ( x ) = 1 \sum\limits_{x \in X}P(x)=1 xXP(x)=1
p d f : ‾ \underline{pdf:} pdf:probability density function(for continuous probability distribution )
(1) f ( x ) ≥ 0 f(x) \geq 0 f(x)0for all x,
(2) ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty}f(x)dx=1 f(x)dx=1

discrete distribution:

Poisson Distribution:
P ( X = x ) = ( n x ) p x ( 1 − p ) n − x = n ! x ! ( n − x ) ! p x ( 1 − p ) n − x = n ( n − 1 ) … ( n − x + 2 ) ( n − x + 1 ) p x x ! ( 1 − p ) n − x P(X = x)=\begin{pmatrix} n \\ x \end{pmatrix}p^{x}(1-p)^{n-x}=\frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}=\\ \frac{n(n-1)\dots(n-x+2)(n-x+1)p^{x}}{x!}(1-p)^{n-x} P(X=x)=(nx)px(1p)nx=x!(nx)!n!px(1p)nx=x!n(n1)(nx+2)(nx+1)px(1p)nx
Let: p → 0 , n → ∞ p\rightarrow 0 ,n \rightarrow \infty p0,n
P ( λ ) P(\lambda) P(λ)
P k = λ k k ! e − λ k = 0 , 1 , … P_{k}=\frac{\lambda^{k}}{k!}e^{-\lambda}\quad k=0,1,\dots Pk=k!λkeλk=0,1,
几何分布:
G e ( n , p ) Ge(n,p) Ge(n,p)(用于研究单次伯努利试验的成功率)
P k = p ( 1 − p ) k − 1 P_{k}=p(1-p)^{k-1} Pk=p(1p)k1
二项分布:
b ( n , p ) b(n,p) b(n,p)
P k = ( n k ) p k ( 1 − p ) n − k P_{k}=\begin{pmatrix} n \\ k \end{pmatrix}p^{k}(1-p)^{n-k} Pk=(nk)pk(1p)nk
Negative Binomial Distribution
( k + r − 1 k ) = ( k + r − 1 ) ! k ! ( r − 1 ) ! = ( k + r − 1 ) ( k + r − 2 ) … ( r ) k ! = ( − 1 ) k ( − k − r + 1 ) ( − k − r + 2 ) … ( − r ) k ! = ( − 1 ) k ( − r k ) \left(\begin{array}{c}{k+r-1} \\ {k}\end{array}\right)=\frac{(k+r-1) !}{k !(r-1) !}=\frac{(k+r-1)(k+r-2) \ldots(r)}{k !}=(-1)^{k} \frac{(-k-r+1)(-k-r+2) \ldots(-r)}{k !}=(-1)^{k}\left(\begin{array}{c}{-r} \\ {k}\end{array}\right) (k+r1k)=k!(r1)!(k+r1)!=k!(k+r1)(k+r2)(r)=(1)kk!(kr+1)(kr+2)(r)=(1)k(rk)

continuous distribution:

Normal distibution:KaTeX parse error: Expected group after '_' at position 5: \int_̲\limits{\mathbb…
∫ 0 ∞ exp ⁡ ( − x 2 2 ) d x = 1 2 \int_{0}^{\infty}\exp \left(-\frac{x^{2}}{2}\right) \mathrm{d} x=\frac{1}{2} 0exp(2x2)dx=21
X ↬ N ( μ , σ 2 ) X \looparrowright N(\mu,\sigma^2) XN(μ,σ2)
pdf p ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 p(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}} p(x)=2π σ1e2σ2(xμ)2
cdf F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^xe^{\frac{-(t-\mu)^2}{2\sigma^2}}dt F(x)=2π σ1xe2σ2(tμ)2dt

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值