量子三体问题: 理论和数学

量子力学三体问题

  • 基于此篇文章: 库伦量子三体问题,前半部分是数学推导,后半部分是数值计算模拟。理论部分来源于项武义教授的研究成果

  • 对于库伦作用的三体问题,薛定谔方程是个9D的偏微分方程,考虑到两个系统守恒量:动量,利用Jacobi坐标可以去除质心坐标运动,9D->6D;角动量,可以利用( L 2 , L z L^2,Lz L2,Lz)算符降维,6D->3D!基于转动不变量的耦合偏微分方程组具有内在的球对称性,利用球坐标,球对称性变得明显,进而根据角度和径向算符的特征函数,耦合偏微分方程组被进一步化为矩阵特征值问题

  • 最终化为一个无限维的矩阵特征值求解问题,矩阵结构超级稀疏,相关矩阵可以表示成Kronecker直积 A ⊗ B A\otimes B AB形式,矩阵维度由三个截断整数参数(m,n,p)控制,(m,n,p)分别代表展开基函数的下标指数

推导过程:公式

  • 基本公式。记 { M i , Z i , i = 1 , 2 , 3 } \{M_i,Z_i, i=1,2,3\} {Mi,Zi,i=1,2,3} 为三个粒子的质量和电荷量,无量纲的三体带电粒子的薛定谔方程为: − 1 2 M Δ Ψ + V Ψ = E Ψ -\frac{1}{2M}\Delta\Psi+V\Psi=E\Psi 2M1ΔΨ+VΨ=EΨ 其中 Δ = ∑ i = 1 3 Δ i m i \Delta=\sum_{i=1}^{3}\frac{\Delta_i}{m_i} Δ=i=13miΔi, 其中 m i = M i M m_i=\frac{M_i}{M} mi=MMi 是粒子的质量比,库伦势能 V = Z 2 Z 3 ∣ r 2 − r 3 ∣ + Z 3 Z 1 ∣ r 3 − r 1 ∣ + Z 1 Z 2 ∣ r 1 − r 2 ∣ V=\frac{Z_2Z_3}{|\bold{r_2-r_3}|}+\frac{Z_3Z_1}{|\bold{r_3-r_1}|}+\frac{Z_1Z_2}{|\bold{r_1-r_2}|} V=r2r3Z2Z3+r3r1Z3Z1+r1r2Z1Z2整个系统由6个参数 { m i , Z i , i = 1 , 2 , 3 } \{m_i,Z_i, i=1,2,3\} {mi,Zi,i=1,2,3}完全确定。
  • 移除质心坐标。采用雅可比坐标
    { R = m 1 r 1 + m 2 r 2 + m 3 r 3 x = m 1 1 − m 1 ( m 2 ( r 1 − r 2 ) + m 3 ( r 1 − r 3 ) ) y = m 2 m 3 1 − m 1 ( r 2 − r 3 ) \begin{cases} \bold{R}=m_1\bold{r_1}+m_2\bold{r_2}+m_3\bold{r_3}\\ \bold{x}=\sqrt{\frac{m_1}{1-m_1}}(m_2(\bold{r_1}-\bold{r_2})+m_3(\bold{r_1}-\bold{r_3}))\\ \bold{y}=\sqrt{\frac{m_2m_3}{1-m_1}}(\bold{r_2}-\bold{r_3}) \end{cases} R=m1r1+m2r2+m3r3x=1m1m1 (m2(r1r2)+m3(r1r3))y=1m1m2m3 (r2r3)
    此时动能算子 Δ = Δ R + Δ x + Δ y \Delta=\Delta_{\bold{R}}+\Delta_{\bold{x}}+\Delta_{\bold{y}} Δ=ΔR+Δx+Δy在质心坐标系下 Δ = Δ x + Δ y \Delta=\Delta_{\bold{x}}+\Delta_{\bold{y}} Δ=Δx+Δy角动量算子 L = L x + L y = − i ( x × ▽ x + y × ▽ y ) \bold{L}=\bold{L_x}+\bold{L_y}=-i(\bold{x\times\bigtriangledown_x+y\times\bigtriangledown_y}) L=Lx+Ly=i(x×x+y×y)
  • 转动不变量。对两个向量 x \bold{x} x y \bold{y} y,可以定义三个转动不变量 f 1 = x ⋅ x , f 2 = y ⋅ y , f 3 = x ⋅ y f_1=\bold{x\cdot x}, f_2=\bold{y\cdot y}, f_3=\bold{x\cdot y} f1=xx,f2=yy,f3=xy进一步采用Jacobi球坐标
    ρ = f 1 + f 2 , cos ⁡ θ = 2 ( f 1 f 2 − f 3 2 ) 1 / 2 ( f 1 + f 2 ) − 1 , tan ⁡ β = 2 f 3 ( f 2 − f 1 ) − 1 , sin ⁡ β = 2 f 3 [ ( f 2 − f 1 ) 2 + 4 f 3 2 ] − 1 / 2 ( 0 ≤ ρ < ∞ , 0 ≤ θ ≤ π / 2 , − π ≤ β ≤ π ) \rho=\sqrt{f_1+f_2},\\ \cos{\theta}=2(f_1f_2-f_3^2)^{1/2}(f_1+f_2)^{-1},\\ \tan{\beta}=2f_3(f_2-f_1)^{-1}, \sin{\beta}=2f_3[(f_2-f_1)^2+4f_3^2]^{-1/2}\\ (0\leq \rho < \infty, 0\leq \theta \leq \pi/2, -\pi \leq \beta \leq \pi) ρ=f1+f2 ,cosθ=2(f1f2f32)1/2(f1+f2)1,tanβ=2f3(f2f1)1,sinβ=2f3[(f2f1)2+4f32]1/2(0ρ<,0θπ/2,πβπ) ξ = sin ⁡ θ \xi=\sin{\theta} ξ=sinθ,反变换关系为
    f 1 = ρ 2 2 ( 1 − ξ cos ⁡ β ) , f 2 = ρ 2 2 ( 1 + ξ cos ⁡ β ) , f 3 = ρ 2 2 ξ sin ⁡ β f_1=\frac{\rho^2}{2}(1-\xi\cos \beta), f_2=\frac{\rho^2}{2}(1+\xi \cos \beta), f_3=\frac{\rho^2}{2}\xi \sin \beta f1=2ρ2(1ξcosβ),f2=2ρ2(1+ξcosβ),f3=2ρ2ξsinβ
  • 粒子间距离表示.
    { ∣ r 23 ∣ 2 = k 1 ρ 2 ( 1 + ξ cos ⁡ β ) , ∣ r 31 ∣ 2 = k 2 ρ 2 ( 1 + ξ cos ⁡ ( β + 2 β 2 ) ) , ∣ r 12 ∣ 2 = k 3 ρ 2 ( 1 + ξ cos ⁡ ( β + 2 β 3 ) ) , \begin{cases} |\bold{r_{23}}|^2 =k_1\rho^2(1+\xi \cos\beta),\\ |\bold{r_{31}}|^2 =k_2\rho^2(1+\xi \cos(\beta+2\beta_2)),\\ |\bold{r_{12}}|^2 =k_3\rho^2(1+\xi \cos(\beta+2\beta_3)), \end{cases} r232=k1ρ2(1+ξcosβ),r312=k2ρ2(1+ξcos(β+2β2)),r122=k3ρ2(1+ξcos(β+2β3)),具体推导和参数定义可在论文中找到
  • 波函数表示

    具体细节请参考文章。该波函数是角动量算子 L 2 , L 3 \bold{L}^2, \bold{L_3} L2,L3,和Parity算子的本征函数,依次对应特征值 l ( l + 1 ) , l l(l+1), l l(l+1),l ( − 1 ) l + λ (-1)^{l+\lambda} (1)l+λ. 带入薛定谔方程,利用角动量基函数的正交性,得到一组转动不变量分量的耦合方程

    至此,PDE的维度已经降为3维. 利用Jacobi球坐标 ( ρ , ξ , β ) (\rho,\xi,\beta) (ρ,ξ,β), 耦合方程进一步化为

    其中


    算符 A l A^{l} Al的本征函数是

    对应本征量

    具体推导细节参考文章。在算子 A l A^{l} Al的本征函数空间,不变量分量可以进一步展开

    算子 A l , B 1 , B 2 A^l,B_1,B_2 Al,B1,B2都已经被对应矩阵表示,分量只依赖于坐标 ρ \rho ρ。其中库伦势能函数

    此处

    U ( ξ , β ) U(\xi,\beta) U(ξ,β) 有三个奇点: ( 1 , π ) (1,\pi) (1,π), ( 1 , π − 2 β 2 ) (1,\pi-2\beta_2) (1,π2β2),和 ( 1 , π − 2 β 3 ) (1,\pi-2\beta_3) (1,π2β3)。这三处奇点完全刻画了库伦三体问题的本质,会显著影响数值计算的收敛性(需要足够大的本征函数空间,才能更好的描述这些cusp尖点)。在质心坐标系下 ρ 2 = m 1 ∣ r 1 ∣ 2 + m 2 ∣ r 2 ∣ 2 + m 3 ∣ r 3 ∣ 2 \rho^2=m_1|\bold{r_1}|^2+m_2|\bold{r_2}|^2+m_3|\bold{r_3}|^2 ρ2=m1r12+m2r22+m3r32,刻画了系统的惯性质量性质。此外库伦势中, ρ \rho ρ ( ξ , β ) (\xi,\beta) (ξ,β)是可以分离的,为进一步化简提供可能。
  • 几个特殊情况
    1. l = 0 l=0 l=0
    2. l = 1 l=1 l=1, 偶Parity
    3. l = 1 l=1 l=1, 奇Parity

      借助标记

      耦合方程可写成更简洁形式
  • l ≥ 2 l\geq2 l2情况,借助矩阵标记,耦合方程可以写成

    符号代表的具体含义可在论文中找到。至此我们可以把关注重心聚焦于涉及 ρ \rho ρ变量的微分算符,接下来会找一组对应的 ρ \rho ρ本征函数,耦合方程会在该本征函数集合上进一步展开,最终化为一个无限维的求解矩阵特征值问题

计算过程:数值设计

计算源码

应用

中性的氢原子会和一个电子结合成束缚态(负能量)系统,有两个束缚态,其中基态能量:

唯一偶宇称束缚态能量:

该状态中相当于两个P态的电子组合,电子之间的作用很显著,变分方法需要的基函数数目会比基态大很多,对能量估计可以比较准确,但对真实波函数的估计精度会下降很多,尤其考虑质子有限质量情况下


附注

Helium原子

一个氦原子核和两个电子组成的三体系统。假定氦原子核质量无穷大。两个电子坐标分别记为 r 1 \bold{r}_1 r1 r 2 \bold{r}_2 r2, 雅可比作坐标取为:
x = r 1 − r 2 2 y = r 1 + r 2 2 \bold{x}=\frac{\bold{r}_1-\bold{r}_2}{\sqrt{2}} \\ \bold{y}=\frac{\bold{r}_1+\bold{r}_2}{\sqrt{2}} x=2 r1r2y=2 r1+r2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值