CQF笔记M1L3泰勒级数和转移概率密度函数

Module 1 Building Blocks of Quant Finance

Lecture 2 Taylor Series and Transition Density Functions
泰勒级数

泰勒展开使用逐次逼近的思想,用多项式函数对函数 f ( x ) f(x) f(x) x 0 x_0 x0的进行近似拟合,将难以研究的函数转换为简单的多项式形式
f ( x ) = ∑ n = 0 ∞ a n ( x − x 0 ) n \begin{aligned} f(x) = \sum_{n=0}^{\infin} a_n (x-x_0)^n\end{aligned} f(x)=n=0an(xx0)n

其中 a n a_n an是常数,推导过程如下:

f ( x 0 ) = a 0 f ′ ( x ) = a 1 + 2 a 2 ( x − x 0 ) + 3 a 3 ( x − x 0 ) 2 + ⋯ f ′ ( x 0 ) = a 1 f ′ ′ ( x ) = 2 a 2 + 6 a 3 ( x − x 0 ) + ⋯ f ′ ′ ( x 0 ) = 2 a 2 f ′ ′ ′ ( x ) = 6 a 3 + ⋯ f ′ ′ ′ ( x 0 ) = 6 a 3 ⋮ f ( n ) ( x 0 ) = n ! a n \begin{aligned} & f(x_0)=a_0 \\ & f'(x)= a_1 + 2a_2(x-x_0) + 3a_3(x-x_0)^2 + \cdots \\ & f'(x_0)=a_1 \\ & f''(x) = 2a_2 + 6a_3(x-x_0) + \cdots \\ & f''(x_0)=2a_2 \\ & f'''(x) = 6a_3 + \cdots \\ & f'''(x_0)=6a_3 \\ & \vdots \\ & f^{(n)}(x_0)=n!a_n \end{aligned} f(x0)=a0f(x)=a1+2a2(xx0)+3a3(xx0)2+f(x0)=a1f(x)=2a2+6a3(xx0)+f(x0)=2a2f(x)=6a3+f(x0)=6a3f(n)(x0)=n!an
得到
a n = f ( n ) ( x 0 ) n ! \begin{aligned} a_n=\frac{f^{(n)}(x_0)}{n!} \end{aligned} an=n!f(n)(x0)
代入泰勒展开式得到
f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n \begin{aligned} f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n\end{aligned} f(x)=n=0n!f(n)(x0)(xx0)n

x − x 0 x-x_0 xx0记为 h h h,则 x = x 0 + h x=x_0+h x=x0+h,得到
f ( x 0 + h ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! h n \begin{aligned} f(x_0+h) = \sum_{n=0}^{\infin} \frac{f^{(n)}(x_0)}{n!} h^n\end{aligned} f(x0+h)=n=0n!f(n)(x0)hn
再将 x 0 x_0 x0改为 x x x,得到泰勒级数的最终形式:
f ( x + h ) = ∑ n = 0 ∞ f ( n ) ( x ) n ! h n \begin{aligned} f(x+h) = \sum_{n=0}^{\infin} \frac{f^{(n)}(x)}{n!} h^n\end{aligned} f(x+h)=n=0n!f(n)(x)hn

注意:

  1. 这是一个近似表达式
  2. 等式右边只使用函数在 x x x处的信息

常用的泰勒级数
e x = ∑ n = 0 ∞ x n n ! \begin{aligned} e^x = \sum_{n=0}^{\infin} \frac{x^n}{n!} \end{aligned} ex=n=0n!xn
l n ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n + 1 x n n \begin{aligned} ln(1+x) = \sum_{n=1}^{\infin} \frac{(-1)^{n+1}x^n}{n} \end{aligned} ln(1+x)=n=1n(1)n+1xn

期权价格的泰勒级数

偏微分

对期权价格函数 V ( S , t ) V(S,t) V(S,t),定义

∂ V ∂ S = lim ⁡ δ S → 0 V ( S + δ S , t ) − V ( S , t ) δ S \begin{aligned} \frac{\partial V}{\partial S} = \lim_{\delta S \to 0} \frac{V(S+\delta S, t) - V(S,t)}{\delta S} \end{aligned} SV=δS0limδSV(S+δS,t)V(S,t)

∂ V ∂ t = lim ⁡ δ t → 0 V ( S , t + δ t ) − V ( S , t ) δ t \begin{aligned} \frac{\partial V}{\partial t} = \lim_{\delta t \to 0} \frac{V(S, t+\delta t) - V(S,t)}{\delta t} \end{aligned} tV=δt0limδtV(S,t+δt)V(S,t)

高阶偏微分是低阶偏微分的偏微分
∂ 2 V ∂ S 2 = ∂ ∂ V ∂ S ∂ S \begin{aligned} \frac{\partial ^ 2V}{\partial S^2} = \frac{\partial \frac{\partial V}{\partial S}}{\partial S} \end{aligned} S22V=SSV

二维泰勒展开

V ( S + δ S , t + δ t ) = V ( S , t ) + δ t ∂ V ∂ t + δ S ∂ V ∂ S + 1 2 ( δ S ) 2 ∂ 2 V ∂ S 2 + 1 2 ( δ t ) 2 ∂ 2 V ∂ t 2 + δ t δ S ∂ 2 V ∂ t ∂ S + ⋯ ≈ V ( S , t ) + δ t ∂ V ∂ t + δ S ∂ V ∂ S + 1 2 ( δ S ) 2 ∂ 2 V ∂ S 2 + ⋯ \begin{aligned} &V(S+\delta S, t+\delta t) \\ = & V(S,t) + \delta t \frac{\partial V}{\partial t} + \delta S \frac{\partial V}{\partial S} + \frac{1}{2} {(\delta S)}^2 \frac{\partial ^ 2V}{\partial S^2} + \frac{1}{2} {(\delta t)}^2 \frac{\partial ^ 2V}{\partial t^2} + \delta t \delta S \frac{\partial ^ 2V}{\partial t\partial S} + \cdots\\ \approx & V(S,t)+\delta t \frac{\partial V}{\partial t} + \delta S \frac{\partial V}{\partial S} + \frac{1}{2} {(\delta S)}^2 \frac{\partial ^ 2V}{\partial S^2} + \cdots \end{aligned} =V(S+δS,t+δt)V(S,t)+δttV+δSSV+21(δS)2S22V+21(δt)2t22V+δtδStS2V+V(S,t)+δttV+δSSV+21(δS)2S22V+

备注:由于资产价格被建模为维纳过程,展开式中 ( δ S ) 2 ∼ δ t {(\delta S)}^2 \sim \delta t (δS)2δt, 不能忽略,但是 δ t \delta t δt的二次及以上的高阶项, δ t δ S \delta t \delta S δtδS及高阶项, δ S \delta S δS三次及以上的高阶项被忽略。后面前向和反向方程中的 y y y也有相同的处理。

符号

Δ = ∂ V ∂ S θ = ∂ V ∂ t Γ = ∂ 2 V ∂ S 2 \begin{aligned} \Delta = \frac{\partial V}{\partial S} \\ \theta = \frac{\partial V}{\partial t} \\ \Gamma = \frac{\partial ^ 2V}{\partial S^2} \\ \end{aligned} Δ=SVθ=tVΓ=S22V

trinomial random walk和转移密度函数

trinomial random walk
在这里插入图片描述
多期trinomial树的模拟结果
在这里插入图片描述
最终价格分布非常接近正态分布
在这里插入图片描述

转移概率密度函数transition probability density function p ( y , t ; y ′ , t ′ ) p(y,t;y',t') p(y,t;y,t)定义为
P r o b ( a < y ′ < b   a t   t i m e   t ′ ∣ y   a t   t i m e   t ) = ∫ a b p ( y , t ; y ′ , t ′ ) d y ′ \begin{aligned} Prob(a<y'<b \ at \ time \ t' | y\ at\ time\ t) = \int_a^b p(y,t;y',t')dy' \end{aligned} Prob(a<y<b at time ty at time t)=abp(y,t;y,t)dy

t t t表示当前时刻
y y y表示当前价格
t ′ t' t表示未来时刻
y ′ y' y表示未来价格

转移概率密度函数表示,以前当前 t t t的价格为 y y y,在未来 t ′ t' t时刻,价格 y ′ y' y位于给定区间 [ a , b ] [a,b] [a,b]的概率

forward equation

已知:当前时刻 t t t的状态 y y y,
求解:在未来时刻 t ′ t' t到达状态 y ′ y' y的概率
在这里插入图片描述

p ( y , t ; y ′ , t ′ ) = α A + ( 1 − 2 α ) B + α C \begin{aligned} p(y,t;y',t') = \alpha A + (1-2\alpha) B + \alpha C \end{aligned} p(y,t;y,t)=αA+(12α)B+αC

其中
A = p ( y , t ; y ′ + δ y , t ′ − δ t ) B = p ( y , t ; y ′ , t ′ − δ t ) C = p ( y , t ; y ′ − δ y , t ′ − δ t ) A ≈ p ( y , t ; y ′ , t ′ ) − δ t ∂ p ∂ t ′ + δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ C ≈ p ( y , t ; y ′ , t ′ ) − δ t ∂ p ∂ t ′ − δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ B ≈ p ( y , t ; y ′ , t ′ ) − δ t ∂ p ∂ t ′ + ⋯ \begin{aligned} & A = p(y,t;y'+\delta y, t'-\delta t) \\ & B = p(y,t;y', t'-\delta t) \\ & C = p(y,t;y'-\delta y, t'-\delta t) \\ & A \approx p(y,t;y',t') - \delta t \frac{\partial p}{\partial t'} + \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & C \approx p(y,t;y',t') - \delta t \frac{\partial p}{\partial t'} - \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & B \approx p(y,t;y',t') - \delta t \frac{\partial p}{\partial t'} + \cdots \\ \end{aligned} A=p(y,t;y+δy,tδt)B=p(y,t;y,tδt)C=p(y,t;yδy,tδt)Ap(y,t;y,t)δttp+δyyp+21δy2y22p+Cp(y,t;y,t)δttpδyyp+21δy2y22p+Bp(y,t;y,t)δttp+

代入化简得到
∂ p ∂ t ′ = α δ y 2 δ t ∂ 2 p ∂ y ′ 2 \begin{aligned} \frac{\partial p}{\partial t'} = \frac{\alpha \delta y^2}{\delta t} \frac{\partial ^2p}{\partial y'^2} \\ \end{aligned} tp=δtαδy2y22p

δ t \delta t δt趋近于0时, δ y \delta y δy也趋近于0。 当 α δ y 2 δ t \begin{aligned} \frac{\alpha \delta y^2}{\delta t}\end{aligned} δtαδy2的极限趋近于有限值时,上述方程才有意义

δ y 2 δ t \begin{aligned} \frac{\delta y^2}{\delta t}\end{aligned} δtδy2 的三个场景:

  1. 分子比分母更快的变为0:随机过程collapse为0
  2. 分子比分母更慢的变为0:随机过程变为无穷
  3. 分子和分母的阶数相同,即 δ y 2 δ t ∼ O ( 1 ) , δ y ∼ O ( δ t ) \begin{aligned} \frac{\delta y^2}{\delta t} \sim O(1), \delta y \sim O(\sqrt{\delta t}) \end{aligned} δtδy2O(1),δyO(δt ),

备注:这里似乎是个循环论证,因为能推导到这一步,已经假设过 δ y 2 ∼ δ t {\delta y}^2 \sim \delta t δy2δt

定义
α δ y 2 δ t = c 2 \begin{aligned} \frac{\alpha \delta y^2}{\delta t} = c^2 \\ \end{aligned} δtαδy2=c2

c c c用于表达波动性: c 2 = 1 2 σ 2 c^2 = \frac{1}{2} \sigma ^2 c2=21σ2

最终的方程变为
∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \begin{aligned} \frac{\partial p}{\partial t'} =c^2 \frac{\partial ^2p}{\partial y'^2} \\ \end{aligned} tp=c2y22p

这个方程称为Fokker–Planck或者forward Kolmogorov方程,是一个线性抛物线偏微分方程forward parabolic partial differential equation(方程的解的线性组合仍然是方程的解),用于计算未来时刻 t ′ t' t y y y的概率分布

backward equation

已知:假定未来时刻 t ′ t' t的状态为 y ′ y' y
求解:当前时刻 t t t的状态为 y y y的概率

反向方程与隐马尔可夫链存在关联

在这里插入图片描述

在这里插入图片描述

p ( y , t ; y ′ , t ′ ) = α A + ( 1 − 2 α ) B + α C \begin{aligned} p(y,t;y',t') = \alpha A + (1-2\alpha) B + \alpha C \end{aligned} p(y,t;y,t)=αA+(12α)B+αC

其中
A = p ( y + δ y , t + δ t ; y ′ , t ′ ) B = p ( y , t + δ t ; y ′ , t ′ ) C = p ( y − δ y , t + δ t ; y ′ , t ′ ) A ≈ p ( y , t ; y ′ , t ′ ) + δ t ∂ p ∂ t ′ + δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ C ≈ p ( y , t ; y ′ , t ′ ) + δ t ∂ p ∂ t ′ − δ y ∂ p ∂ y ′ + 1 2 δ y 2 ∂ 2 p ∂ y ′ 2 + ⋯ B ≈ p ( y , t ; y ′ , t ′ ) + δ t ∂ p ∂ t ′ + ⋯ \begin{aligned} & A = p(y+\delta y,t+\delta t;y', t') \\ & B = p(y,t+\delta t;y', t') \\ & C = p(y-\delta y,t+\delta t;y', t') \\ & A \approx p(y,t;y',t') + \delta t \frac{\partial p}{\partial t'} + \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & C \approx p(y,t;y',t') + \delta t \frac{\partial p}{\partial t'} - \delta y \frac{\partial p}{\partial y'} + \frac{1}{2} \delta y^2 \frac{\partial ^2p}{\partial y'^2} + \cdots \\ & B \approx p(y,t;y',t') + \delta t \frac{\partial p}{\partial t'} + \cdots \\ \end{aligned} A=p(y+δy,t+δt;y,t)B=p(y,t+δt;y,t)C=p(yδy,t+δt;y,t)Ap(y,t;y,t)+δttp+δyyp+21δy2y22p+Cp(y,t;y,t)+δttpδyyp+21δy2y22p+Bp(y,t;y,t)+δttp+

代入化简得到
∂ p ∂ t ′ + α δ y 2 δ t ∂ 2 p ∂ y ′ 2 = 0 \begin{aligned} \frac{\partial p}{\partial t'} + \frac{\alpha \delta y^2}{\delta t} \frac{\partial ^2p}{\partial y'^2} = 0 \\ \end{aligned} tp+δtαδy2y22p=0

定义
α δ y 2 δ t = c 2 \begin{aligned} \frac{\alpha \delta y^2}{\delta t} = c^2 \end{aligned} δtαδy2=c2

最终的方程变为
∂ p ∂ t ′ + c 2 ∂ 2 p ∂ y ′ 2 = 0 \begin{aligned} \frac{\partial p}{\partial t'} + c^2 \frac{\partial ^2p}{\partial y'^2} = 0 \\ \end{aligned} tp+c2y22p=0

与前向方程仅仅只有符号上的差别
BS方程是反向方程

注意:

  • 这里的y可以为负值,但是金融资产的价格,例如股价,不可能是负值
  • 三叉树模型只允许 y y y往三个特定值变化,是极其简单的特例
  • 不同的金融量,需要不同的模型:股价、利率
Similarity solutions 求解过程

也叫Similarity Reduction Method,通过引入新的变量并换元减少维度

大部分微分方程没有显式解(无法用初等函数表示,可以类比为大部分问题无法用编程语言的标准库解决),通常用数值解法求解,能求解的是一些形式比较特殊的微分方程。

考虑前向方程 ∂ p ∂ t ′ = c 2 ∂ 2 p ∂ y ′ 2 \begin{aligned} \frac{\partial p}{\partial t'} = c^2 \frac{\partial ^2p}{\partial y'^2} \\ \end{aligned} tp=c2y22p

微分方程的初始条件和边界条件

  • 初始条件 initial conditions:how solution starts off
  • 边界条件 boundary conditions:函数在给定y’时的行为

(1) 考察一个如下形式的解: p = t ′ a f ( y ′ t ′ b ) \begin{aligned} p = t'^a f(\frac{y'}{t'^b}) \end{aligned} p=taf(tby), 目标是解出常数项 a , b a, b a,b和函数 f ( x ) f(x) f(x)的解析式


ξ = y ′ t − b \xi = y' t^{-b} ξ=ytb
用链式法则和乘法法则求导
∂ p ∂ y ′ = t ′ a d f d ξ d ξ d y ′ = t ′ a − b d f d ξ ∂ 2 p ∂ y ′ 2 = t ′ a − 2 b d 2 f d ξ 2 d p d t ′ = a t ′ a − 1 f ( ξ ) + t ′ a d f d ξ ∂ ξ ∂ t ′ = a t ′ a − 1 f ( ξ ) − b y ′ t ′ a − b − 1 d f d ξ \begin{aligned} \frac{\partial p}{\partial y'} = & {t'}^a \frac{df}{d \xi} \frac{d \xi}{dy'} = {t'}^{a-b} \frac{df}{d \xi} \\ \frac{\partial ^2 p}{\partial {y'}^2 } = & {t'}^{a-2b} \frac{d^2f}{d \xi^2} \\ \frac{dp}{dt'} = & a{t'}^{a-1}f(\xi) + {t'}^a \frac{df}{d\xi} \frac{\partial \xi}{\partial t'} \\ = & a{t'}^{a-1}f(\xi) -by'{t'}^{a-b-1} \frac{df}{d\xi} \\ \end{aligned} yp=y22p=dtdp==tadξdfdydξ=tabdξdfta2bdξ2d2fata1f(ξ)+tadξdftξata1f(ξ)bytab1dξdf

(2)带入原方程,得到
a t ′ a − 1 f ( ξ ) − b y ′ t ′ a − b − 1 d f d ξ = c 2 t ′ a − 2 b d 2 f d ξ 2 \begin{aligned} a{t'}^{a-1}f(\xi) -by'{t'}^{a-b-1} \frac{df}{d\xi} = c^2 {t'}^{a-2b} \frac{d^2f}{d \xi^2} \end{aligned} ata1f(ξ)bytab1dξdf=c2ta2bdξ2d2f

消去y’和部分t’得到
a f ( ξ ) − b ξ d f d ξ = c 2 t ′ − 2 b + 1 d 2 f d ξ 2 \begin{aligned} af(\xi) - b \xi \frac{df}{d\xi}=c^2{t'}^{-2b+1} \frac{d^2f}{d \xi ^2} \end{aligned} af(ξ)bξdξdf=c2t2b+1dξ2d2f

左边与 t ′ t' t无关,说明右边应该也没有 t ′ t' t项,所以 b = 1 2 b=\frac{1}{2} b=21

(3) 带入b得到
a f ( ξ ) − 1 2 ξ d f d ξ = c 2 d 2 f d ξ 2 \begin{aligned} af(\xi) - \frac{1}{2} \xi \frac{df}{d\xi}=c^2 \frac{d^2f}{d \xi ^2} \end{aligned} af(ξ)21ξdξdf=c2dξ2d2f

备注:这里没有给出推导过程

解微分方程得到原方程的一个解形式为:
p = t ′ a f ( y ′ t ′ ) \begin{aligned} p={t'}^a f(\frac{y'}{\sqrt{t'}}) \end{aligned} p=taf(t y)
因为可以选择不同的常数 a a a,这是一个解集

(4)考虑(问题的出发点:转移概率密度函数)
∫ − ∞ ∞ p ( y ′ , t ′ ) d y ′ = 1 = ∫ − ∞ ∞ t ′ a f ( y ′ t ′ ) d y ′ \begin{aligned} \int_{-\infin}^{\infin} p(y',t')dy' = 1 = \int_{-\infin}^{\infin} {t'}^a f(\frac{y'}{\sqrt{t'}})dy' \end{aligned} p(y,t)dy=1=taf(t y)dy


y ′ = t ′ 1 2 u y' = {t'}^{\frac{1}{2}} u y=t21u
带入得到
t ′ a + 1 2 ∫ − ∞ ∞ f ( u ) d u = 1 \begin{aligned} {t'}^{a + \frac{1}{2}} \int_{-\infin}^{\infin} f(u)du=1 \end{aligned} ta+21f(u)du=1
同样因为右边与 t ′ t' t无关,所以 a = − 1 2 a=-\frac{1}{2} a=21

同时有: ∫ − ∞ ∞ f ( u ) d u = 1 \begin{aligned} \int_{-\infin}^{\infin} f(u)du=1 \end{aligned} f(u)du=1

(5)带入 a a a得到:
− 1 2 f ( ξ ) − 1 2 ξ d f d ξ = c 2 d 2 f d ξ 2 \begin{aligned} -\frac{1}{2}f(\xi) - \frac{1}{2} \xi \frac{df}{d\xi}=c^2 \frac{d^2f}{d \xi ^2} \end{aligned} 21f(ξ)21ξdξdf=c2dξ2d2f

再次求解微分方程
− 1 2 d ( ξ f ) d ξ = c 2 f ′ ′ → − 1 2 ξ f = c 2 f ′ + C o n s t \begin{aligned} -\frac{1}{2} \frac {d(\xi f)}{d\xi}=c^2 f'' \rightarrow -\frac{1}{2} \xi f = c^2 f' + Const \end{aligned} 21dξd(ξf)=c2f21ξf=c2f+Const
ξ \xi ξ趋向于 ∞ \infin 时, f ( ξ ) f(\xi) f(ξ) f ′ ( ξ ) f'(\xi) f(ξ)都趋向于0, 因此 C o n s t Const Const应该为0

c 2 d ( l n f ) d ξ = − 1 2 ξ → f ( ξ ) = A e − ξ 2 4 c 2 \begin{aligned} c^2 \frac{d(lnf)}{d\xi} = -\frac{1}{2} \xi \rightarrow f(\xi) = Ae^{-\frac{\xi^2}{4c^2}} \end{aligned} c2dξd(lnf)=21ξf(ξ)=Ae4c2ξ2

(6)由于 ∫ − ∞ ∞ f ( u ) d u = 1 \begin{aligned} \int_{-\infin}^{\infin} f(u)du=1 \end{aligned} f(u)du=1

最终得到 p p p的解析式为
p = 1 2 c π t ′ e x p ( − y ′ 2 4 c 2 t ′ ) \begin{aligned} p = \frac{1}{2c \sqrt{\pi t'}} exp(- \frac{{y'}^2}{4c^2t'}) \end{aligned} p=2cπt 1exp(4c2ty2)

表示 y ′ y' y服从正态分布 y ′ ∼ N ( 0 , 2 c 2 t ′ ) y' \sim N(0, 2c^2t') yN(0,2c2t)

(7)最终解
p ( y , t ; y ′ , t ′ ) = 1 2 c π ( t ′ − t ) e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) \begin{aligned} p(y, t; y', t') = \frac{1}{2c \sqrt{\pi (t' - t)}} exp(- \frac{{(y' - y)}^2}{4c^2 (t'-t)}) \end{aligned} p(y,t;y,t)=2cπ(tt) 1exp(4c2(tt)(yy)2)

也就是,如果在t时刻看t’时刻, 转移PDF的均值为 y y y, 方差为 4 c 2 ( t ′ − t ) 4c^2 (t'-t) 4c2(tt)

这就是trinomial random walk前向方程的转移概率密度函数

预测时间越长,方差越大(表示预测准确的概率越低)
在这里插入图片描述

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值