CQF笔记M2L2优化理论及其在资产组合选择中的应用

Module 2 Quantitative Risk & Return

Lecture 2 Fundamentals of Optimization and Application to Portfolio Selectio
2.2.1 优化理论

优化问题:寻找函数 f f f满足一系列约束条件时的"最优可能值"

优化技术在金融领域有广泛应用:

  • 计算债券收益的价值
  • 求解资产组合选择问题(离散时间和连续时间)
  • 衍生品估值(美式期权和Passport期权)

优化问题的形式多样,有的非常简单,有的极其复杂。

优化问题的一般形式
min ⁡ x 1 , ⋯   , x n f ( x 1 , ⋯   , x n ) \begin{aligned} \min_{x_1, \cdots, x_n} f(x_1,\cdots, x_n) \end{aligned} x1,,xnminf(x1,,xn)

subject to :
g 1 ( x 1 , ⋯   , x n ) ≤   b 1 ⋮ =   ⋮ g m ( x 1 , ⋯   , x n ) ≥   b m \begin{aligned} & g_1(x_1,\cdots, x_n) & \le & \ b_1 \\ & \vdots &= & \ \vdots \\ & g_m(x_1,\cdots, x_n) & \ge & \ b_m \\ \end{aligned} g1(x1,,xn)gm(x1,,xn)= b1  bm

  • f f f 目标函数
  • x 1 , ⋯   , x n x_1,\cdots, x_n x1,,xn 决策变量(decision variables)
  • g 1 , ⋯   , g m g_1, \cdots, g_m g1,,gm 约束条件,约束条件可以是等式也可以是不等式

基本规则

  • 转换最大值和最小值
    m a x f ( x ) = − m i n ( − f ( x ) ) m i n f ( x ) = − m a x ( − f ( x ) ) \begin{aligned} maxf(x) = -min(-f(x)) \\ minf(x) = -max(-f(x)) \\ \end{aligned} maxf(x)=min(f(x))minf(x)=max(f(x))

  • 仿射变换(Affine Transformation)
    m a x ( a + b f ( x ) ) = a + b   m a x ( f ( x ) ) ,   b > 0 \begin{aligned} max(a+bf(x)) = a + b \ max(f(x)), \ b > 0 \end{aligned} max(a+bf(x))=a+b max(f(x)), b>0

2.2.2 无约束条件的优化问题

无约束条件的优化问题退化为 min ⁡ x 1 , ⋯   , x n f ( x 1 , ⋯   , x n ) \begin{aligned} \min_{x_1, \cdots, x_n} f(x_1,\cdots, x_n) \end{aligned} x1,,xnminf(x1,,xn)

这是个标准的多元微积分问题,目标是找到一个向量 x ⃗ ∗ = ( x 1 ∗ , ⋯   , x n ∗ ) \vec{x}^* = (x_1^*, \cdots, x_n^*) x =(x1,,xn)使得 f f f为全局最小值

  • 必要条件: f f f x ⃗ ∗ \vec{x}^* x 处的梯度(微分向量),记做 ∇ f ( x ⃗ ∗ ) \nabla f(\vec{x}^*) f(x ),为0,表示在 x ⃗ ∗ \vec{x}^* x 处为极值,但是可能是极小值也可能是极大值
  • 充分条件: f f f x ⃗ ∗ \vec{x}^* x 处的海森矩阵(Hessian, 二阶微分矩阵),记做 H f ( x ⃗ ∗ ) Hf(\vec{x}^*) Hf(x ),为正(为负表示极大值)
应用1 均值-方差优化准则

符号

单位向量

1 ⃗ = ( 1 ⋮ 1 ⋮ 1 ) \vec{1} = \left( \begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ \end{matrix} \right) 1 =111

收益的期望值(期望收益)

μ ⃗ = ( μ 1 ⋮ μ i ⋮ μ n ) \vec{\mu} = \left( \begin{matrix} \mu _1 \\ \vdots \\ \mu _i \\ \vdots \\ \mu _n \\ \end{matrix} \right) μ =μ1μiμn

期望的标准差(向量)

σ ⃗ = ( σ 1 ⋮ σ i ⋮ σ n ) \vec{\sigma} = \left( \begin{matrix} \sigma _1 \\ \vdots \\ \sigma _i \\ \vdots \\ \sigma _n \\ \end{matrix} \right) σ =σ1σiσn

期望的标准差(对角阵)

S ⃗ = D ( σ ⃗ ) = ( σ 1 0 ⋯ 0 0 σ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ n ) \vec{S} = {D}(\vec{\sigma}) = \left( \begin{matrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n \\ \end{matrix} \right) S =D(σ )=σ1000σ2000σn

期望的相关性矩阵(对称阵)

R ⃗ = ( 1 ρ 12 ⋯ ρ 1 n ρ 21 1 ⋯ ρ 2 n ⋮ ⋮ ⋱ ⋮ ρ n 1 ρ n 2 ⋯ 1 ) \vec{R} = \left( \begin{matrix} 1 & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{21} & 1 & \cdots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \cdots & 1 \\ \end{matrix} \right) R =1ρ21ρn1ρ121ρn2ρ1nρ2n1

期望的协方差矩阵(对称阵)

Σ ⃗ = S R S ⃗ = ( σ 1 2 ρ 12 σ 1 σ 2 ⋯ ρ 1 n σ 1 σ n ρ 21 σ 2 σ 1 σ 2 2 ⋯ ρ 2 n σ 2 σ n ⋮ ⋮ ⋱ ⋮ ρ n 1 σ 2 σ n ρ n 2 σ n σ 2 ⋯ σ n 2 ) \vec{\Sigma} = \vec{SRS} = \left( \begin{matrix} \sigma_1^2 & \rho_{12} \sigma_1 \sigma_2 & \cdots & \rho_{1n} \sigma_1 \sigma_n \\ \rho_{21} \sigma_2 \sigma_1 & \sigma_2^2 & \cdots & \rho_{2n} \sigma_2 \sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} \sigma_2 \sigma_n & \rho_{n2} \sigma_n \sigma_2 & \cdots & \sigma_n^2 \\ \end{matrix} \right) Σ =SRS =σ12ρ21σ2σ1ρn1σ2σnρ12σ1σ2σ22ρn2σnσ2ρ1nσ1σnρ2nσ2σnσn2

资产权重

w ⃗ = ( w 1 ⋮ w i ⋮ w n ) \vec{w} = \left( \begin{matrix} w _1 \\ \vdots \\ w _i \\ \vdots \\ w _n \\ \end{matrix} \right) w =w1wiwn

投资组合中有N个资产,资产收益的

  • 期望值为 μ ⃗ \vec{\mu} μ
  • 标准差为 σ ⃗ \vec{\sigma} σ
  • 相关系数为 R ⃗ \vec{R} R
  • 权重分别为 ω ⃗ \vec{\omega} ω

组合收益的期望值 μ π = μ ⃗ T w ⃗ \mu_\pi = \vec{\mu} ^ T \vec{w} μπ=μ Tw
组合收益的方差 σ π 2 = w ⃗ T Σ ⃗ w ⃗ \sigma_\pi ^2 = \vec{w}^T \vec{\Sigma} \vec{w} σπ2=w TΣ w
注:这里按一般习惯用上标T表示向量/矩阵的转置

分解协方差矩阵

由于协方差矩阵 S ⃗ \vec{S} S 是对角阵, 有 S ⃗ T = S ⃗ \vec{S}^T = \vec{S} S T=S ,相关性矩阵 R ⃗ \vec{R} R 是对称阵,也有 R ⃗ T = R ⃗ \vec{R}^T = \vec{R} R T=R ,所以 Σ ⃗ T = S ⃗ T R ⃗ T S ⃗ = S ⃗ R ⃗ S ⃗ T = Σ ⃗ \vec{\Sigma}^T = \vec{S}^T \vec{R}^T \vec{S} = \vec{S} \vec{R} \vec{S}^T = \vec{\Sigma} Σ T=S TR TS =S R S T=Σ

加入无风险资产

无风险资产,收益的期望、收益的标准差和权重分别为 r , 0 , w 0 r, 0, w_0 r,0,w0

维度为n的单位向量记做 1 ⃗ \vec{1} 1
1 ⃗ = ( 1 ⋮ 1 ⋮ 1 ) \vec{1} = \left( \begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ \end{matrix} \right) 1 =111

无风险资产的权重 w 0 = 1 − w ⃗ T 1 ⃗ w_0 = 1 - \vec{w}^T \vec{1} w0=1w T1

组合收益的期望值 μ π = μ ⃗ T w ⃗ +   r   ( 1 − w ⃗ T 1 ⃗ ) = r + w ⃗ T ( μ ⃗ − r 1 ⃗ ) \mu_\pi = \vec{\mu} ^ T \vec{w} + \ r \ (1 - \vec{w}^T \vec{1}) = r + \vec{w}^T (\vec{\mu} - r \vec{1}) μπ=μ Tw + r (1w T1 )=r+w T(μ r1 )
引入无风险资产后,组合收益分为无风险收益 r r r和风险溢价 ( μ ⃗ − r 1 ⃗ ) (\vec{\mu} - r \vec{1}) (μ r1 )

组合收益的方差 σ π 2 = w ⃗ T Σ ⃗ w ⃗ \sigma_\pi ^2 = \vec{w}^T \vec{\Sigma} \vec{w} σπ2=w TΣ w

资产组合优化的目标是找到权重向量 w ⃗ \vec{w} w ,使得

  • 收益一定时,风险(方差)最小
  • 风险(方差)一定时,收益最大

马科维茨定义的目标函数(将风险和收益统一为效用函数):
max ⁡ w μ p − λ 2 σ p 2 \begin{aligned} \max_w \mu_p - \frac{\lambda}{2} \sigma_p ^2 \end{aligned} wmaxμp2λσp2
其中 λ \lambda λ表示风险厌恶程度
由于将剩余的财产投入到无风险资产,不需要约束项 w T 1 ⃗ = 1 w^T \vec{1} = 1 wT1 =1

因此优化问题变为: max ⁡ w V ( w ) = [ r + w ⃗ T ( μ − r 1 ⃗ ) ] − λ 2 w ⃗ T Σ ⃗ w ⃗ \begin{aligned} \max_w V(w) = [r + \vec{w}^T (\mu - r \vec{1})] - \frac{\lambda}{2} \vec{w}^T \vec{\Sigma} \vec{w} \end{aligned} wmaxV(w)=[r+w T(μr1 )]2λw TΣ w

一阶条件(梯度) ∇ V ( w ⃗ ∗ ) = ∂ V ∂ w ⃗ ( w ⃗ ∗ ) = ( μ ⃗ − r 1 ⃗ ) − λ Σ ⃗ w ⃗ = 0 \begin{aligned} \nabla V(\vec{w}^*) = \frac{\partial V}{\partial \vec{w}}(\vec{w}^*) = (\vec{\mu} - r \vec{1}) - \lambda \vec{\Sigma} \vec{w} = 0 \end{aligned} V(w )=w V(w )=(μ r1 )λΣ w =0
得到备选解 w ∗ = 1 λ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) \begin{aligned} w^* = \frac{1}{\lambda} \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) \end{aligned} w=λ1Σ 1(μ r1 )

海森矩阵 H V ( w ∗ ) = − λ Σ ⃗ < 0 \begin{aligned} H V(w^*) = - \lambda \vec{\Sigma} < 0 \end{aligned} HV(w)=λΣ <0
因此备选解对应的是最大值

应用2 最小二乘法线性回归

CAPM 模型 : E [ R A − r ] = β E [ R M − r ] \mathbb{E}[R^A - r] = \beta \mathbb{E}[R^M - r] E[RAr]=βE[RMr]

  • R A R^A RA 资产A的收益
  • r r r 无风险利率
  • β \beta β 对系统风险的敞口
  • R M R^M RM 整个金融市场的收益

变换形式: E [ R A ] = r + β E [ R M − r ] \mathbb{E}[R_A] = r + \beta \mathbb{E}[R_M - r] E[RA]=r+βE[RMr]

用最小二乘法(Ordinary Least Square, OLS)拟合历史数据,得到斜率 β \beta β的估计值 β ^ \hat{\beta} β^

  • 对于成熟的公司,用5年的月度数据(60个观察值)
  • 对于快速变化的公司,用两年的周数据(104个观察值)

R i A − r = β ( R i M − r ) + ϵ i R_i^A - r = \beta (R_i^M - r) + \epsilon_i RiAr=β(RiMr)+ϵi

  • 对所有的 i i i, r r r β \beta β都是相同的,
  • ϵ i \epsilon_i ϵi是每个历史数据的残差项error term,具备以下性质(为了数学推导上的方便)
    • 均值为0: E [ ϵ i ] = 0 \mathbb{E}[\epsilon_i] = 0 E[ϵi]=0
    • 方差为有限值: E [ ϵ i 2 ] = s 2 \mathbb{E}[\epsilon_i^2] = s^2 E[ϵi2]=s2
    • 协方差为0: E [ ϵ i ϵ j ] = 0 \mathbb{E}[\epsilon_i \epsilon_j] = 0 E[ϵiϵj]=0

这里没有要求残差项服从正态分布,但是一般来说假设残差项服从正态分布会比较方便。

因变量
Y ⃗ = ( Y 1 ⋮ Y i ⋮ Y n ) = ( R 1 A − r ⋮ R i A − r ⋮ R n A − r ) \vec{Y} = \left( \begin{matrix} Y _1 \\ \vdots \\ Y _i \\ \vdots \\ Y _n \\ \end{matrix} \right) = \left( \begin{matrix} R_1^A - r \\ \vdots \\ R_i^A - r \\ \vdots \\ R_n^A - r \\ \end{matrix} \right) Y =Y1YiYn=R1ArRiArRnAr

自变量
X ⃗ = ( X 1 ⋮ X i ⋮ X n ) = ( R 1 M − r ⋮ R i M − r ⋮ R n M − r ) \vec{X} = \left( \begin{matrix} X _1 \\ \vdots \\ X _i \\ \vdots \\ X _n \\ \end{matrix} \right) = \left( \begin{matrix} R_1^M - r \\ \vdots \\ R_i^M - r \\ \vdots \\ R_n^M - r \\ \end{matrix} \right) X =X1XiXn=R1MrRiMrRnMr

模型变为 Y ⃗ = X ⃗ β + ϵ ⃗ \vec{Y} = \vec{X} \beta + \vec{\epsilon} Y =X β+ϵ

ϵ ⃗ = ( ϵ 1 ⋮ ϵ i ⋮ ϵ n ) \vec{\epsilon} = \left( \begin{matrix} \epsilon _1 \\ \vdots \\ \epsilon _i \\ \vdots \\ \epsilon _n \\ \end{matrix} \right) ϵ =ϵ1ϵiϵn

回归线方程 Y ⃗ ^ = X ⃗ β ^ \hat{\vec{Y}} = \vec{X} \hat{\beta} Y ^=X β^

  • β ^ \hat{\beta} β^是斜率 β \beta β的估计值
  • Y ⃗ ^ \hat{\vec{Y}} Y ^ Y ⃗ \vec{Y} Y 的预测值

残差项 ϵ ⃗ = Y ⃗ − X ⃗ β ^ = Y ⃗ − Y ⃗ ^ \vec{\epsilon} = \vec{Y} - \vec{X} \hat{\beta} = \vec{Y} - \hat{\vec{Y}} ϵ =Y X β^=Y Y ^
在这里插入图片描述

估计值 β ^ \hat{\beta} β^应使得残差项最小,使用残差项的平方和作为目标函数

  • 残差项项正可负,求平方可以消除负值的影响
  • 求平方可以放大大的残差
  • 求平方和可以累积所有观察值的影响

min ⁡ β F ( β ) = ∑ i = 1 n ϵ i 2 = ∑ i = 1 n ( Y i − Y i ^ ) 2 = ∑ i = 1 n ( Y i − X i β ) 2 \min_{\beta} F(\beta) = \sum_{i=1}^{n} \epsilon_i^2 =\sum_{i=1}^{n} (Y_i - \hat{Y_i})^2 = \sum_{i=1}^{n} (Y_i - X_i \beta)^2 βminF(β)=i=1nϵi2=i=1n(YiYi^)2=i=1n(YiXiβ)2

矩阵表达形式
min ⁡ β F ( β ) = ϵ ⃗ T ϵ ⃗ = ( Y ⃗ − Y ⃗ ^ ) T ( Y ⃗ − Y ⃗ ^ ) = ( Y ⃗ − X ⃗ β ) T ( Y ⃗ − X ⃗ β ) = Y ⃗ T Y ⃗ − 2 β X ⃗ T Y ⃗ + β 2 X ⃗ T X ⃗ \begin{aligned} &\min_{\beta} F(\beta) \\ = &\vec{\epsilon}^T \vec{\epsilon} \\ = &(\vec{Y} - \hat{\vec{Y}})^T (\vec{Y} - \hat{\vec{Y}}) \\ = &(\vec{Y} - \vec{X} \beta)^T (\vec{Y} - \vec{X} \beta) \\ = &\vec{Y}^T \vec{Y} - 2 \beta \vec{X}^T \vec{Y} + \beta^2 \vec{X}^T \vec{X} \end{aligned} ====βminF(β)ϵ Tϵ (Y Y ^)T(Y Y ^)(Y X β)T(Y X β)Y TY 2βX TY +β2X TX

一阶导数 ∂ F ∂ β = − 2 X ⃗ T Y ⃗ + 2 β X ⃗ T X ⃗ \begin{aligned} \frac{\partial F}{\partial \beta} = -2 \vec{X}^T \vec{Y} + 2 \beta \vec{X}^T \vec{X} \end{aligned} βF=2X TY +2βX TX
二阶导数 ∂ 2 F ∂ β 2 = 2 X ⃗ T X ⃗ \begin{aligned} \frac{\partial^2 F}{\partial \beta^2} = 2 \vec{X}^T \vec{X} \end{aligned} β22F=2X TX
当二阶导大于0时,由一阶导等于0得到 β ^ = ( X ⃗ T X ⃗ ) − 1 X ⃗ T Y ⃗ \hat{\beta} = (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{Y} β^=(X TX )1X TY

真实值 β \beta β是常量,估计量 β ^ \hat{\beta} β^是随机变量。样本量越大, β ^ \hat{\beta} β^越接近 β \beta β
均值 E ( β ^ ) = β \mathbb{E}(\hat{\beta})=\beta E(β^)=β
方差(注意其中 X ⃗ \vec{X} X 是已知的,残差项 ϵ ⃗ \vec{\epsilon} ϵ 是随机变量,且均值为0,方差为 s 2 s^2 s2
E [ ( β ^ − β ) 2 ] = E [ ( β − ( X ⃗ T X ⃗ ) − 1 X ⃗ T Y ⃗ ) ( ( β − ( X ⃗ T X ⃗ ) − 1 X ⃗ T Y ⃗ ) T ] = E [ ( β − ( X ⃗ T X ⃗ ) − 1 X ⃗ T ( X ⃗ β + ϵ ⃗ ) ) ( ( β − ( X ⃗ T X ⃗ ) − 1 X ⃗ T ( X ⃗ β + ϵ ⃗ ) ) T ] = E [ ( X ⃗ T X ⃗ ) − 1 X T ϵ ⃗ ϵ ⃗ T X ( X ⃗ T X ⃗ ) − 1 ] = E [ ( X ⃗ T X ⃗ ) − 1 X T ϵ ⃗ ϵ ⃗ T X ( X ⃗ T X ⃗ ) − 1 ] = ( X ⃗ T X ⃗ ) − 1 X T E [ ϵ ⃗ ϵ ⃗ T ] X ( X ⃗ T X ⃗ ) − 1 = ( X ⃗ T X ⃗ ) − 1 X T s 2 I ⃗ X ( X ⃗ T X ⃗ ) − 1 = s 2 ( X ⃗ T X ⃗ ) − 1 \begin{aligned} &\mathbb{E}[(\hat{\beta} - \beta)^2] \\ = &\mathbb{E}[(\beta - (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{Y})((\beta - (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{Y})^T] \\ = &\mathbb{E}[(\beta - (\vec{X}^T \vec{X})^{-1} \vec{X}^T (\vec{X} \beta + \vec{\epsilon}))((\beta - (\vec{X}^T \vec{X})^{-1} \vec{X}^T (\vec{X} \beta + \vec{\epsilon}))^T] \\ = &\mathbb{E}[ (\vec{X}^T \vec{X})^{-1} X^T \vec{\epsilon} \vec{\epsilon}^T X (\vec{X}^T \vec{X})^{-1}] \\ = &\mathbb{E}[ (\vec{X}^T \vec{X})^{-1} X^T \vec{\epsilon} \vec{\epsilon}^T X (\vec{X}^T \vec{X})^{-1}] \\ = &(\vec{X}^T \vec{X})^{-1} X^T \mathbb{E}[\vec{\epsilon} \vec{\epsilon}^T] X (\vec{X}^T \vec{X})^{-1} \\ = &(\vec{X}^T \vec{X})^{-1} X^T s^2 \vec{I} X (\vec{X}^T \vec{X})^{-1} \\ = & s^2 (\vec{X}^T \vec{X})^{-1} \end{aligned} =======E[(β^β)2]E[(β(X TX )1X TY )((β(X TX )1X TY )T]E[(β(X TX )1X T(X β+ϵ ))((β(X TX )1X T(X β+ϵ ))T]E[(X TX )1XTϵ ϵ TX(X TX )1]E[(X TX )1XTϵ ϵ TX(X TX )1](X TX )1XTE[ϵ ϵ T]X(X TX )1(X TX )1XTs2I X(X TX )1s2(X TX )1

多因子模型

R A = α + ∑ j = 1 m β j × F j + ϵ R^A = \alpha + \sum_{j=1}^{m} \beta^j \times F^j + \epsilon RA=α+j=1mβj×Fj+ϵ

  • α \alpha α是截距项
  • F 1 , ⋯   , F m F^1, \cdots, F^m F1,,Fm是m个因子,对应的斜率系数为 β 1 , ⋯   , β m \beta^1, \cdots, \beta^m β1,,βm

总共需要估计 m + 1 m+1 m+1个参数

模型仍然是 Y ⃗ = X ⃗ β + ϵ ⃗ \vec{Y} = \vec{X} \beta + \vec{\epsilon} Y =X β+ϵ

因变量
Y ⃗ = ( Y 1 ⋮ Y i ⋮ Y n ) = ( R 1 A ⋮ R i A ⋮ R n A ) \vec{Y} = \left( \begin{matrix} Y _1 \\ \vdots \\ Y _i \\ \vdots \\ Y _n \\ \end{matrix} \right) = \left( \begin{matrix} R_1^A \\ \vdots \\ R_i^A \\ \vdots \\ R_n^A \\ \end{matrix} \right) Y =Y1YiYn=R1ARiARnA

自变量
X ⃗ = ( F 1 1 ⋯ F 1 j ⋯ F 1 m 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ F i 1 ⋯ F i j ⋯ F i m 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ F n 1 ⋯ F n j ⋯ F n m 1 ) \vec{X} = \left( \begin{matrix} F_1^1 & \cdots & F_1^j & \cdots & F_1^m & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ F_i^1 & \cdots & F_i^j & \cdots & F_i^m & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ F_n^1 & \cdots & F_n^j & \cdots & F_n^m & 1 \\ \end{matrix} \right) X =F11Fi1Fn1F1jFijFnjF1mFimFnm111

系数
β ⃗ = ( β 1 ⋮ β i ⋮ β m α ) \vec{\beta} = \left( \begin{matrix} \beta^1 \\ \vdots \\ \beta^i \\ \vdots \\ \beta^m \\ \alpha \\ \end{matrix} \right) β =β1βiβmα

估计值仍然是 β ⃗ ^ = ( X ⃗ T X ⃗ ) − 1 X ⃗ T Y ⃗ \hat{\vec{\beta}} = (\vec{X}^T \vec{X})^{-1} \vec{X}^T \vec{Y} β ^=(X TX )1X TY

协方差矩阵 E [ ( β ⃗ ^ − β ⃗ ) ( β ⃗ ^ − β ⃗ ) T ] = s 2 ( X ⃗ T X ⃗ ) − 1 \mathbb{E}[(\hat{\vec{\beta}} - \vec{\beta})(\hat{\vec{\beta}} - \vec{\beta})^T] = s^2 (\vec{X}^T \vec{X})^{-1} E[(β ^β )(β ^β )T]=s2(X TX )1

2.2.3 等式约束条件的优化问题

等式约束条件的优化问题的一般形式
min ⁡ x 1 , ⋯   , x n f ( x 1 , ⋯   , x n ) \begin{aligned} \min_{x_1, \cdots, x_n} f(x_1,\cdots, x_n) \end{aligned} x1,,xnminf(x1,,xn)
subject to :
g 1 ( x 1 , ⋯   , x n ) =   b 1 ⋮ g m ( x 1 , ⋯   , x n ) =   b m \begin{aligned} & g_1(x_1,\cdots, x_n) & = & \ b_1 \\ & & \vdots \\ & g_m(x_1,\cdots, x_n) & = & \ b_m \\ \end{aligned} g1(x1,,xn)gm(x1,,xn)== b1 bm

这类问题无法使用标准微积分方法求解。

拉格朗日方法和拉格朗日乘子
L ( x ⃗ , λ ⃗ ) = f ( x ⃗ ) + ∑ j = 1 m λ j ( g j ( x ⃗ ) − b j ) L(\vec{x}, \vec{\lambda}) = f(\vec{x}) + \sum_{j=1}^{m} \lambda_j (g_j(\vec{x})-b_j) L(x ,λ )=f(x )+j=1mλj(gj(x )bj)

符号 x ⃗ = ( x 1 , ⋯   , x n ) ,   λ ⃗ = ( λ 1 , ⋯   , λ m ) \vec{x}=(x_1,\cdots,x_n), \ \vec{\lambda}=(\lambda_1, \cdots, \lambda_m) x =(x1,,xn), λ =(λ1,,λm)

拉格朗日方程将n变量m个等式约束条件的问题变换为n+m变量无约束条件的优化问题
min ⁡ x ⃗ , λ ⃗ L ( x ⃗ , λ ⃗ ) \min_{\vec{x}, \vec{\lambda}} L(\vec{x}, \vec{\lambda}) x ,λ minL(x ,λ )

一阶条件
∂ L ∂ x i ( x ) = ∂ f ∂ x i ( x ) + ∑ j = 1 m λ j ∂ g j ∂ x i ( x ) = 0 ,   i = 1 , ⋯   , n ∂ L ∂ λ j ( x ) = g j ( x ) − b j = 0 ,   j = 1 , ⋯   , m \begin{aligned} & \frac{\partial L}{\partial x_i}(x) = \frac{\partial f}{\partial x_i}(x) + \sum_{j=1}^{m} \lambda_j \frac {\partial g_j}{\partial x_i}(x) = 0, \ i = 1, \cdots, n \\ & \frac{\partial L}{\partial \lambda_j}(x) = g_j(x) - b_j = 0, \ j = 1, \cdots, m \end{aligned} xiL(x)=xif(x)+j=1mλjxigj(x)=0, i=1,,nλjL(x)=gj(x)bj=0, j=1,,m

通过一阶条件求解之后,还需要检查海森条件(二阶条件)

最小化包含N的风险资产的资产组合的风险

在这里插入图片描述

要求解的问题:在给定回报的情况下,最小化组合风险
目标函数 min ⁡ w ⃗ = 1 2 σ π 2 = 1 2 w ⃗ T Σ ⃗ w ⃗ \begin{aligned} \min_{\vec{w}} = \frac{1}{2} \sigma_{\pi}^2 = \frac{1}{2} \vec{w}^T \vec{\Sigma} \vec{w} \end{aligned} w min=21σπ2=21w TΣ w
约束条件

  • μ π = μ ⃗ T w ⃗ = w ⃗ T μ ⃗ = m \mu_{\pi} = \vec{\mu}^T \vec{w} = \vec{w}^T \vec{\mu} = m μπ=μ Tw =w Tμ =m
  • 1 ⃗ T w ⃗ = w ⃗ T 1 ⃗ = 1 \vec{1}^T \vec{w} = \vec{w}^T \vec{1} = 1 1 Tw =w T1 =1

使用拉格朗日方法,引入拉格朗日乘子
L ( w ⃗ , λ , γ ) = 1 2 w ⃗ T Σ ⃗ w ⃗ + λ ( m − w ⃗ T μ ) + γ ( 1 − w ⃗ T 1 ⃗ ) L(\vec{w}, \lambda, \gamma) = \frac{1}{2} \vec{w}^T \vec{\Sigma} \vec{w} + \lambda(m - \vec{w}^T \mu) + \gamma(1 - \vec{w}^T \vec{1}) L(w ,λ,γ)=21w TΣ w +λ(mw Tμ)+γ(1w T1 )

一阶条件
∂ L ∂ w ( w , λ , γ ) = Σ ⃗ w ⃗ − λ μ ⃗ − γ 1 ⃗ \frac{\partial L}{\partial w} (w, \lambda, \gamma) = \vec{\Sigma} \vec{w} - \lambda \vec{\mu} - \gamma \vec{1} wL(w,λ,γ)=Σ w λμ γ1
求解得到
w ⃗ ∗ = Σ ⃗ − 1 ( λ μ ⃗ + γ 1 ⃗ ) \vec{w}^* = \vec{\Sigma}^{-1} (\lambda \vec{\mu} + \gamma \vec{1}) w =Σ 1(λμ +γ1 )

带入到约束条件
m = μ ⃗ T w ⃗ = μ ⃗ T Σ ⃗ − 1 ( λ μ ⃗ + γ 1 ⃗ ) = λ μ ⃗ T Σ ⃗ − 1 μ ⃗ + γ μ ⃗ T Σ ⃗ − 1 1 ⃗ 1 = 1 ⃗ T w ⃗ = 1 ⃗ T Σ ⃗ − 1 ( λ μ ⃗ + γ 1 ⃗ ) = λ 1 ⃗ T Σ ⃗ − 1 μ ⃗ + γ 1 ⃗ T Σ ⃗ − 1 1 ⃗ m = \vec{\mu}^T \vec{w} = \vec{\mu}^T \vec{\Sigma}^{-1} (\lambda \vec{\mu} + \gamma \vec{1}) = \lambda \vec{\mu}^T \vec{\Sigma}^{-1} \vec{\mu} + \gamma \vec{\mu}^T \vec{\Sigma}^{-1} \vec{1} \\ 1 = \vec{1}^T \vec{w} = \vec{1}^T \vec{\Sigma}^{-1} (\lambda \vec{\mu} + \gamma \vec{1}) = \lambda \vec{1}^T \vec{\Sigma}^{-1} \vec{\mu} + \gamma \vec{1}^T \vec{\Sigma}^{-1} \vec{1} m=μ Tw =μ TΣ 1(λμ +γ1 )=λμ TΣ 1μ +γμ TΣ 11 1=1 Tw =1 TΣ 1(λμ +γ1 )=λ1 TΣ 1μ +γ1 TΣ 11

定义以下标量
{ A = 1 ⃗ T Σ ⃗ − 1 1 ⃗ B = 1 ⃗ T Σ ⃗ − 1 μ ⃗ = μ ⃗ T Σ ⃗ − 1 1 ⃗ C = μ ⃗ T Σ ⃗ − 1 μ ⃗ \left\{\begin{aligned} A &= \vec{1}^T \vec{\Sigma}^{-1} \vec{1} \\ B &= \vec{1}^T \vec{\Sigma}^{-1} \vec{\mu} = \vec{\mu}^T \vec{\Sigma}^{-1} \vec{1} \\ C &= \vec{\mu}^T \vec{\Sigma}^{-1} \vec{\mu} \\ \end{aligned}\right. ABC=1 TΣ 11 =1 TΣ 1μ =μ TΣ 11 =μ TΣ 1μ
存在 A C − B 2 > 0 AC-B^2 \gt 0 ACB2>0

C λ + B γ = m B λ + A γ = 1 \left.\begin{aligned} C \lambda + B \gamma = m \\ B \lambda + A \gamma = 1 \\ \end{aligned}\right. Cλ+Bγ=mBλ+Aγ=1

求解得到
{ λ = A m − B A C − B 2 γ = C − B m A C − B 2 \left\{\begin{aligned} \lambda &= \frac{Am-B}{AC-B^2} \\ \gamma &= \frac{C-Bm}{AC-B^2} \\ \end{aligned}\right. λγ=ACB2AmB=ACB2CBm
代入可得到 w ⃗ ∗ \vec{w}^* w 的解析式

最小方差组合

将权重带入后,将方差表示为 m m m的函数 σ π 2 ( m ) = A m 2 − 2 B m + C A C − B 2 \sigma_{\pi}^2(m) = \frac{Am^2 - 2Bm + C}{AC-B^2} σπ2(m)=ACB2Am22Bm+C

求解最小方差组合就是求解 min ⁡ m σ π 2 ( m ) \min_m \sigma_{\pi}^2 (m) mminσπ2(m)

对m求导得到 m g = B A m_g = \frac{B}{A} mg=AB

代入得到
权重 w g = Σ ⃗ − 1 1 ⃗ A \begin{aligned} w_g = \frac{\vec{\Sigma}^{-1} \vec{1}}{A} \end{aligned} wg=AΣ 11

方差 σ g 2 = 1 A \begin{aligned} \sigma_g^2 = \frac{1}{A} \end{aligned} σg2=A1

N个风险资产和无风险资产

在这里插入图片描述

优化问题变为:
目标函数 min ⁡ w ⃗ = 1 2 σ π 2 = 1 2 w ⃗ T Σ ⃗ w ⃗ \begin{aligned} \min_{\vec{w}} = \frac{1}{2} \sigma_{\pi}^2 = \frac{1}{2} \vec{w}^T \vec{\Sigma} \vec{w} \end{aligned} w min=21σπ2=21w TΣ w
约束条件

  • r + w ⃗ T ( μ ⃗ − r 1 ⃗ ) = m r + \vec{w}^T (\vec{\mu} - r \vec{1})= m r+w T(μ r1 )=m

拉格朗日方程 V ( ω ⃗ , λ ) = 1 2 ω ⃗ T Σ ⃗ ω ⃗ + λ ( r + ω ⃗ T ( μ ⃗ − r 1 ⃗ ) − m ) \begin{aligned} V(\vec{\omega}, \lambda) = \frac{1}{2} \vec{\omega}^T \vec{\Sigma} \vec{\omega} + \lambda (r + \vec{\omega}^T (\vec{\mu} - r \vec{1}) - m) \end{aligned} V(ω ,λ)=21ω TΣ ω +λ(r+ω T(μ r1 )m)

一阶导(梯度)

∂ V ∂ ω ⃗ ( ω ⃗ ∗ , λ ) = Σ ⃗ ω ⃗ ∗ + λ ( μ ⃗ − r 1 ⃗ ) = 0 → ω ⃗ ∗ = λ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) \begin{aligned} & \frac {\partial V}{\partial \vec{\omega}}(\vec{\omega} ^ *, \lambda) = \vec{\Sigma} \vec{\omega}^* + \lambda (\vec{\mu} - r \vec{1}) = 0 \\ \to \quad & \vec{\omega}^* = \lambda \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) \\ \end{aligned} ω V(ω ,λ)=Σ ω +λ(μ r1 )=0ω =λΣ 1(μ r1 )

ω ⃗ ∗ \vec{\omega}^* ω 代入到约束条件

r + [ λ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) ] T ( μ ⃗ − r 1 ⃗ ) = m → λ ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) = m − r → λ = m − r ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) → ω ⃗ ∗ = λ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) = ( m − r ) Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) \begin{aligned} & r + [\lambda \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})]^T (\vec{\mu} - r \vec{1}) = m \\ \to \quad & \lambda (\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) = m - r \\ \to \quad & \lambda = \frac{m - r}{(\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})} \\ \to \quad & \vec{\omega}^* = \lambda \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) = \frac {(m -r) \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})} {(\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})} \\ \end{aligned} r+[λΣ 1(μ r1 )]T(μ r1 )=mλ(μ r1 )TΣ 1(μ r1 )=mrλ=(μ r1 )TΣ 1(μ r1 mrω =λΣ 1(μ r1 )=(μ r1 )TΣ 1(μ r1 )(mr)Σ 1(μ r1 )

夏普比率

D = ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) = μ ⃗ T Σ ⃗ − 1 μ ⃗ − r 1 ⃗ T Σ ⃗ − 1 μ ⃗ − r μ ⃗ T Σ ⃗ − 1 1 ⃗ + r 2 1 ⃗ T Σ ⃗ − 1 1 ⃗ = C − 2 r B + r 2 A 2 ω ⃗ ∗ = ( μ π − r ) Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) D σ π = ω ⃗ ∗ T Σ ⃗ ω ⃗ ∗ = ( μ π − r ) 2 D 2 [ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) ] T Σ ⃗ [ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) ] = ( μ π − r ) 2 D 2 ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 Σ ⃗ Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) = ( μ π − r ) 2 D 2 ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) = ( μ π − r ) 2 D S R = μ π − r σ π = D = ( μ ⃗ − r 1 ⃗ ) T Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) \begin{aligned} D =& (\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) \\ = & \vec{\mu}^T \vec{\Sigma}^{-1} \vec{\mu} - r \vec{1}^T \vec{\Sigma}^{-1} \vec{\mu} - r \vec{\mu}^T \vec{\Sigma}^{-1} \vec{1} + r^2 \vec{1}^T \vec{\Sigma}^{-1} \vec{1} \\ = &C - 2rB + r^2 A^2 \\ \\ \vec{\omega}^* =& \frac {(\mu_{\pi} - r) \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})} {D} \\ \\ \sigma_{\pi} =& \vec{\omega}^{*T} \vec{\Sigma} \vec{\omega}^* \\ =& \frac{(\mu_{\pi} - r)^2}{D^2} [\vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})]^T \vec{\Sigma} [\vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) ] \\ =& \frac{(\mu_{\pi} - r)^2}{D^2} (\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} \vec{\Sigma} \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) \\ =& \frac{(\mu_{\pi} - r)^2}{D^2} (\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1}) \\ =& \frac{(\mu_{\pi} - r)^2}{D} \\ \\ SR =& \frac {\mu_{\pi} - r}{\sigma_{\pi}} \\ =& \sqrt{D} \\ =& \sqrt{(\vec{\mu} - r \vec{1})^T \vec{\Sigma}^{-1} (\vec{\mu} - r \vec{1})} \end{aligned} D===ω =σπ=====SR===(μ r1 )TΣ 1(μ r1 )μ TΣ 1μ r1 TΣ 1μ rμ TΣ 11 +r21 TΣ 11 C2rB+r2A2D(μπr)Σ 1(μ r1 )ω TΣ ω D2(μπr)2[Σ 1(μ r1 )]TΣ [Σ 1(μ r1 )]D2(μπr)2(μ r1 )TΣ 1Σ Σ 1(μ r1 )D2(μπr)2(μ r1 )TΣ 1(μ r1 )D(μπr)2σπμπrD (μ r1 )TΣ 1(μ r1 )

  • 矩阵运算满足结合律
  • Σ ⃗ \vec{\Sigma} Σ 是对称阵, Σ ⃗ − 1 \vec{\Sigma}^{-1} Σ 1也是对称阵

加入无风险资产后,投资组合的有限前沿变为直线,斜率为夏普比率SR

切线组合

切线组合全部投资在风险资产上,即 w t ⃗ T 1 ⃗ = 1 \vec{w_t}^T \vec{1} = 1 wt T1 =1
w t ⃗ = Σ ⃗ − 1 ( μ ⃗ − r 1 ⃗ ) B − A r \vec{w_t} = \frac{\vec{\Sigma}^{-1}(\vec{\mu} - r \vec{1})}{B-Ar} wt =BArΣ 1(μ r1 )

均值 m t = w t ⃗ T μ ⃗ = C − B r B − A r m_t = \vec{w_t}^T \vec{\mu} = \frac{C-Br}{B-Ar} mt=wt Tμ =BArCBr

方差 σ t = w t ⃗ T Σ ⃗ w t ⃗ = C − 2 r B + r 2 A ( B − A r ) 2 \sigma_t = \vec{w_t}^T \vec{\Sigma} \vec{w_t} = \frac{C-2rB +r^2 A}{(B-Ar)^2} σt=wt TΣ wt =(BAr)2C2rB+r2A

2.2.4 Black-Litterman模型

动态资产选择模型,关注超额收益

超额收益 R ~ = R − r 1 ⃗ , R ~ ∼ N ( μ ~ , Σ ) \tilde{R} = R - r \vec{1}, \quad \tilde{R} \sim N(\tilde{\mu}, \Sigma) R~=Rr1 ,R~N(μ~,Σ)

其中 μ ~ = μ ⃗ − r 1 ⃗ \tilde{\mu} = \vec{\mu} - r \vec{1} μ~=μ r1 , Σ \Sigma Σ是协方差矩阵

Black-Litterman模型认为:真实的超额回报均值 μ ~ \tilde{\mu} μ~无法直接计算或观测到,因此依赖于估计量 π \pi π
π ∼ N ( μ ~ , Σ π ) \pi \sim N(\tilde{\mu}, \Sigma_{\pi}) πN(μ~,Σπ)

π \pi π是围绕 μ ~ \tilde{\mu} μ~波动的噪声项(随机项)
π = μ ~ + ϵ , ϵ ∼ N ( 0 , Σ π ) \pi = \tilde{\mu} + \epsilon , \quad \epsilon \sim N(0, \Sigma_{\pi}) π=μ~+ϵ,ϵN(0,Σπ)

假设 ϵ \epsilon ϵ μ ~ \tilde{\mu} μ~不相关,则
R ~ ∼ N ( μ ~ , Σ r ) , Σ r = Σ + Σ π \tilde{R} \sim N(\tilde{\mu}, \Sigma_r) , \quad \Sigma_r = \Sigma + \Sigma_{\pi} R~N(μ~,Σr),Σr=Σ+Σπ

Black-Litterman公式有两种推导方法:

  • Theil’s mixed estimation model:使用generalised least squares regression (GLS)方法,GLS是OLS的扩展
  • Bayes’s Formula:用获得的新信息优化资产配置,可以用贝叶斯统计方法解释(贝叶斯公式用新条件更新先验概率,得到后验概率)

贝叶斯方法的内容:

  • Step 0: Introducing Bayes’ Formula;
  • Step 1: Reverse optimization to get the prior;
  • Step 2: Inputing the view;
  • Step 3: Combining to get the posterior distribution;
  • Step 4: Asset allocation.

Step 0: Introducing Bayes’ Formula

P ( E ∣ I ) = P ( I ∣ E ) P ( I ) × P ( E ) P(E|I) = \frac{P(I|E)}{P(I)} \times P(E) P(EI)=P(I)P(IE)×P(E)

其中:

  • E E E是事件
  • I I I是新信息
  • P ( E ) P(E) P(E)是先验概率,没有信息 I I I之前的概率
  • P ( E ∣ I ) P(E|I) P(EI)是后验概率,知道信息 I I I之后的概率(主观概率)
  • P ( I ) P(I) P(I)是归一化常量

Step 1: Reverse optimization to get the prior

可能的先验条件:

  • 平均分配(每个资产 1 / N 1/N 1/N
  • 全局最小方差组合
  • any other `neutral and uninformed’ portfolio

这些选择都不理想:

  • 得到全局最小方差,隐含了要估计超额收益。如果使用历史收益,可能不能反映未来期望,导致不切实际的组合
  • 平均分配不能建立超额回报的先验视角(用均价分配表示什么都没有知道,没有先验知识)

Black-Litterman使用equilibrium CAPM portfolio也就是求解:
max ⁡ w ⃗ w ⃗ T R ~ − λ 2 w ⃗ T Σ w ⃗ \max_{\vec{w}} \vec{w}^T \tilde{R} - \frac{\lambda}{2} \vec{w}^T \Sigma \vec{w} w maxw TR~2λw TΣw

Σ \Sigma Σ是超额回报的协方差矩阵

求解得到 w ⃗ ∗ = 1 λ Σ − 1 R ~ \vec{w}^{*} = \frac{1}{\lambda} \Sigma^{-1} \tilde{R} w =λ1Σ1R~

现在的问题:不知道超额回报向量

对于市场组合有(这里的意思似乎是用市场组合的超额收益 Π ⃗ \vec{\Pi} Π 代替 R ~ \tilde{R} R~):
w ⃗ M = 1 λ Σ − 1 Π ⃗ Π ⃗ = λ Σ w ⃗ M \vec{w}_M = \frac{1}{\lambda} \Sigma^{-1} \vec{\Pi} \\ \vec{\Pi} = \lambda \Sigma \vec{w}_M w M=λ1Σ1Π Π =λΣw M

风险厌恶因子

w ⃗ T Π ⃗ = λ w ⃗ T Σ w ⃗ M = λ σ M 2 \vec{w}^{T} \vec{\Pi} = \lambda \vec{w}^{T} \Sigma \vec{w}_M = \lambda \sigma_M^2 w TΠ =λw TΣw M=λσM2

λ = w ⃗ T Π ⃗ σ M 2 = 1 σ M S M \lambda = \frac{\vec{w}^{T} \vec{\Pi}}{\sigma_M^2} = \frac{1}{\sigma_M} S_M λ=σM2w TΠ =σM1SM

夏普比率
S M = w ⃗ T Π ⃗ σ M S_M = \frac{\vec{w}^{T} \vec{\Pi}}{\sigma_M} SM=σMw TΠ

在模型中,夏普比例取0.5

假设 Σ Π = τ Σ \Sigma_{\Pi} = \tau \Sigma ΣΠ=τΣ

得到先验概率分布
P ( E ) ∼ N ( Π , τ Σ ) P(E) \sim N(\Pi, \tau \Sigma) P(E)N(Π,τΣ)

参数 τ \tau τ

通常 τ \tau τ接近于0,取值位于0.01到0.05之间
如果估计长度为T的时间序列的历史数据,取 τ ≈ T − 1 \tau \approx T^{-1} τT1

Step 2: Inputing the views

  • Relative view:用资产之间的收益差衡量
  • Absolute view:用资产的绝对收益衡量

P ( I ∣ E ) ∼ N ( Q , Ω ) P(I|E) \sim N(Q, \Omega) P(IE)N(Q,Ω)

Q Q Q是收益率向量
Ω \Omega Ω是置信度协方差矩阵

确定协方差矩阵 Ω \Omega Ω
Ω : = D i a g ( P ( τ Σ ) P T ) \Omega := Diag(P(\tau \Sigma) P^T) Ω:=Diag(P(τΣ)PT)

Diag是对角化函数

Step 3: Combining to get the posterior distribution

μ = [ ( τ Σ ) − 1 + P T Ω − 1 P ] − 1 [ ( τ Σ ) − 1 Π + P T Ω − 1 Q ] σ 2 = [ ( τ Σ ) − 1 + P T Ω − 1 P ] − 1 P ( E ∣ I ) ∼ N ( μ , σ 2 ) R ^ I : = E [ R ~ ∣ I ] = μ \begin{aligned} \mu = &[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1}[(\tau \Sigma)^{-1} \Pi + P^T\Omega^{-1} Q] \\ \sigma^2 = &[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} \\ P(E|I) \sim &N(\mu, \sigma^2) \\ \hat{R}_I := &\mathbb{E}[\tilde{R}|I] = \mu \end{aligned} μ=σ2=P(EI)R^I:=[(τΣ)1+PTΩ1P]1[(τΣ)1Π+PTΩ1Q][(τΣ)1+PTΩ1P]1N(μ,σ2)E[R~I]=μ

Step 4: Asset allocation

max ⁡ w ⃗ [ r + w T R ^ I ] − λ w T Σ w \max_{\vec{w}} [r + w^T \hat{R}_I] - \frac{\lambda}w^T \Sigma w w max[r+wTR^I]wλTΣw

求解得到
w ∗ = 1 λ Σ − 1 R ^ I w^* = \frac{1}{\lambda} \Sigma^{-1} \hat{R}_I w=λ1Σ1R^I

2.2.5 不等式约束条件:Kuhn-Tucker条件

不等式约束条件的优化问题的一般形式
min ⁡ x 1 , ⋯   , x n f ( x 1 , ⋯   , x n ) \begin{aligned} \min_{x_1, \cdots, x_n} f(x_1,\cdots, x_n) \end{aligned} x1,,xnminf(x1,,xn)
subject to :
g 1 ( x 1 , ⋯   , x n ) ≤   b 1 ⋮ g m ( x 1 , ⋯   , x n ) ≤   b m \begin{aligned} & g_1(x_1,\cdots, x_n) & \le & \ b_1 \\ & & \vdots \\ & g_m(x_1,\cdots, x_n) & \le & \ b_m \\ \end{aligned} g1(x1,,xn)gm(x1,,xn) b1 bm

Kuhn-Tucker条件

λ 0 ∂ f ( x ) ∂ x i + ∑ j = 1 m λ j ∂ ( g j ( x ) − b j ) ∂ x i = 0 i = 1 , ⋯   , n λ j ( g j ( x ) − b j ) = 0 j = 1 , ⋯   , m λ j ≥ 0 j = 0 , ⋯   , m \begin{aligned} \lambda_0 \frac{\partial f(x)}{\partial x_i} + \sum_{j=1}^{m} \lambda_j \frac{\partial (g_j(x) - b_j)}{\partial x_i} &= 0 \qquad i = 1, \cdots, n \\ \lambda_j (g_j(x) - b_j) &= 0 \qquad j = 1, \cdots, m \\ \lambda_j &\ge 0 \qquad j = 0, \cdots, m \\ \end{aligned} λ0xif(x)+j=1mλjxi(gj(x)bj)λj(gj(x)bj)λj=0i=1,,n=0j=1,,m0j=0,,m

Kuhn-Tucker条件在目标函数是凸函数且约束条件为线性时才是充分必要条件。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值