[数学] 一般正态曲线函数的积分
1、问题说明
在通信原理的判决门限和数字图像处理的阈值处理中,经常会遇到关于正态函数的积分值讨论。我们知道,标准正态分布 N ∼ ( 1 , 0 ) N\sim(1,0) N∼(1,0)的函数积分值是1,即:
1 2 π ∫ − ∞ ∞ e − x 2 2 d x = 1 \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} {e^{-\frac{x^2}{2}}} dx=1 2π1∫−∞∞e−2x2dx=1
证明过程如第2部分所示。
对于一般的情形
N
∼
(
μ
,
σ
2
)
N\sim(\mu,\sigma^2)
N∼(μ,σ2),积分的结果又如何呢?这一点我们在第3部分讨论。
2、 N ∼ ( 1 , 0 ) N\sim(1,0) N∼(1,0)的函数积分值
记概率密度函数
f
(
x
)
=
1
2
π
e
−
x
2
2
(1)
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}} {2}}\tag{1}
f(x)=2π1e−2x2(1)
记
f
(
x
)
f(x)
f(x)在
(
−
∞
,
∞
)
(-\infty,\infty)
(−∞,∞)上的积分值为
I
=
∫
−
∞
+
∞
f
(
x
)
d
x
(2)
I=\int_{-\infty}^{+\infty} f(x) d x \tag{2}
I=∫−∞+∞f(x)dx(2)
由于积分值与变量名无关,将
x
x
x 换为
y
y
y ,得
I
=
∫
−
∞
+
∞
1
2
π
e
−
x
2
2
d
x
=
∫
−
∞
+
∞
1
2
π
e
−
y
2
2
d
y
(3)
I=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}} {2}} dx=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}} {2}} dy\tag{3}
I=∫−∞+∞2π1e−2x2dx=∫−∞+∞2π1e−2y2dy(3)
由于
x
x
x 与
y
y
y 相互独立,可由(3)得
I
2
=
∫
−
∞
+
∞
1
2
π
e
−
x
2
2
d
x
×
∫
−
∞
+
∞
1
2
π
e
−
y
2
2
d
y
I^2=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}} {2}} dx \times\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}} {2}} dy
I2=∫−∞+∞2π1e−2x2dx×∫−∞+∞2π1e−2y2dy
I 2 = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 d x d y (4) I^2=\frac {1} {2\pi} \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} e^{-\frac{x^{2}+y^2} {2}} dx dy \tag{4} I2=2π1∫−∞+∞∫−∞+∞e−2x2+y2dxdy(4)
对
x
x
x 和
y
y
y 进行变量替换,
x
=
r
c
o
s
θ
,
y
=
r
s
i
n
θ
x=rcos{\theta},~~~y=rsin{\theta}
x=rcosθ, y=rsinθ
根据雅可比行列式计算出变量替换后的微分项:
d
x
d
y
=
∣
∂
(
x
,
y
)
∂
(
r
,
θ
)
∣
d
r
d
θ
=
∣
∂
x
∂
r
∂
y
∂
r
∂
x
∂
θ
∂
y
∂
θ
∣
d
r
d
θ
=
∣
cos
θ
sin
θ
−
r
sin
θ
r
cos
θ
∣
d
r
d
θ
=
r
d
r
d
θ
d x d y=\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta=\left|\begin{array}{ll} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{array}\right| d r d \theta=\left|\begin{array}{cc} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{array}\right| d r d \theta=rdrd\theta
dxdy=∣∣∣∣∂(r,θ)∂(x,y)∣∣∣∣drdθ=∣∣∣∣∂r∂x∂θ∂x∂r∂y∂θ∂y∣∣∣∣drdθ=∣∣∣∣cosθ−rsinθsinθrcosθ∣∣∣∣drdθ=rdrdθ
则(4)经过变量替换后,得到
I
2
=
1
2
π
∫
0
2
π
∫
0
∞
e
−
r
2
2
r
d
r
d
θ
I^2=\frac {1} {2\pi} \int_{0}^{2\pi}\int_{0}^{\infty} e^{-\frac{r^2} {2}} r dr d\theta
I2=2π1∫02π∫0∞e−2r2rdrdθ
I 2 = ( 1 2 π ∫ 0 2 π d θ ) ( ∫ 0 ∞ e − r 2 2 r d r ) I^2=(\frac {1} {2\pi} \int_{0}^{2\pi} d\theta)( \int_{0}^{\infty} e^{-\frac{r^2} {2}} r dr) I2=(2π1∫02πdθ)(∫0∞e−2r2rdr)
I 2 = 1 2 ∫ 0 ∞ e − r 2 2 d r 2 = 1 I^2=\frac{1}{2} \int_{0}^{\infty} e^{-\frac{r^2} {2}} dr^2=1 I2=21∫0∞e−2r2dr2=1
又由于显然有
I
>
0
I>0
I>0 ,因此可知
I
=
1
2
π
∫
−
∞
∞
e
−
x
2
2
d
x
=
1
(5)
I=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} {e^{-\frac{x^2}{2}}} dx=1 \tag{5}
I=2π1∫−∞∞e−2x2dx=1(5)
3、 N ∼ ( μ , σ 2 ) N\sim(\mu,\sigma^2) N∼(μ,σ2)的函数积分值
对于一般的正态分布函数
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
(6)
f(x)=\frac{1}{\sqrt{2 \pi }\sigma} e^{-\frac{(x-\mu)^{2}} {2\sigma^2}} \tag{6}
f(x)=2πσ1e−2σ2(x−μ)2(6)
对
x
x
x 进行变量替换,用
z
z
z 表示
z
=
x
−
μ
σ
,
d
x
=
σ
d
z
z = \frac {x-\mu} {\sigma} , ~~~ dx = \sigma dz
z=σx−μ, dx=σdz
则该函数的积分值为
I
=
1
2
π
σ
∫
−
∞
+
∞
e
−
(
x
−
μ
)
2
2
σ
2
d
x
=
1
2
π
σ
∫
−
∞
+
∞
e
−
z
2
2
σ
d
z
=
1
(7)
I = \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu)^{2}} {2\sigma^2}} dx = \frac{1}{\sqrt{2 \pi} \sigma}\int_{-\infty}^{+\infty} e^{-\frac{z^{2}} {2}} \sigma dz = 1 \tag{7}
I=2πσ1∫−∞+∞e−2σ2(x−μ)2dx=2πσ1∫−∞+∞e−2z2σdz=1(7)
上式中最后一步利用了(5)中的结果。
4、分析与讨论
可以看出,不管
σ
\sigma
σ的值为多少,正态分布密度函数在
(
−
∞
,
∞
)
(-\infty,\infty)
(−∞,∞)上的积分值都为1,函数
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
f(x)=\frac{1}{\sqrt{2 \pi }\sigma} e^{-\frac{(x-\mu)^{2}} {2\sigma^2}}
f(x)=2πσ1e−2σ2(x−μ)2中前面系数的分母上的
σ
\sigma
σ起到了归一化的作用。
σ
\sigma
σ越大,曲线越矮胖,表示数值的分布越分散,这也与
σ
\sigma
σ本身的含义一致——标准差。
但是,如果缺少了前面分母中的
σ
\sigma
σ,则该函数的积分值与
σ
\sigma
σ成正比。这需要根据具体的应用场景来确定。