[数学] 一般正态曲线函数的积分怎么求?为什么总是1?

1、问题说明

在通信原理的判决门限和数字图像处理的阈值处理中,经常会遇到关于正态函数的积分值讨论。我们知道,标准正态分布 N ∼ ( 1 , 0 ) N\sim(1,0) N(1,0)的函数积分值是1,即:

1 2 π ∫ − ∞ ∞ e − x 2 2 d x = 1 \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} {e^{-\frac{x^2}{2}}} dx=1 2π 1e2x2dx=1

证明过程如第2部分所示。

对于一般的情形 N ∼ ( μ , σ 2 ) N\sim(\mu,\sigma^2) N(μ,σ2),积分的结果又如何呢?这一点我们在第3部分讨论。


2、 N ∼ ( 1 , 0 ) N\sim(1,0) N(1,0)的函数积分值

记概率密度函数
f ( x ) = 1 2 π e − x 2 2 (1) f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}} {2}}\tag{1} f(x)=2π 1e2x2(1)

f ( x ) f(x) f(x) ( − ∞ , ∞ ) (-\infty,\infty) (,)上的积分值为
I = ∫ − ∞ + ∞ f ( x ) d x (2) I=\int_{-\infty}^{+\infty} f(x) d x \tag{2} I=+f(x)dx(2)

由于积分值与变量名无关,将 x x x 换为 y y y ,得
I = ∫ − ∞ + ∞ 1 2 π e − x 2 2 d x = ∫ − ∞ + ∞ 1 2 π e − y 2 2 d y (3) I=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}} {2}} dx=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}} {2}} dy\tag{3} I=+2π 1e2x2dx=+2π 1e2y2dy(3)

由于 x x x y y y 相互独立,可由(3)得
I 2 = ∫ − ∞ + ∞ 1 2 π e − x 2 2 d x × ∫ − ∞ + ∞ 1 2 π e − y 2 2 d y I^2=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}} {2}} dx \times\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}} {2}} dy I2=+2π 1e2x2dx×+2π 1e2y2dy

I 2 = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 d x d y (4) I^2=\frac {1} {2\pi} \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} e^{-\frac{x^{2}+y^2} {2}} dx dy \tag{4} I2=2π1++e2x2+y2dxdy(4)

x x x y y y 进行变量替换,
x = r c o s θ ,     y = r s i n θ x=rcos{\theta},~~~y=rsin{\theta} x=rcosθ,   y=rsinθ

根据雅可比行列式计算出变量替换后的微分项:
d x d y = ∣ ∂ ( x , y ) ∂ ( r , θ ) ∣ d r d θ = ∣ ∂ x ∂ r ∂ y ∂ r ∂ x ∂ θ ∂ y ∂ θ ∣ d r d θ = ∣ cos ⁡ θ sin ⁡ θ − r sin ⁡ θ r cos ⁡ θ ∣ d r d θ = r d r d θ d x d y=\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right| d r d \theta=\left|\begin{array}{ll} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{array}\right| d r d \theta=\left|\begin{array}{cc} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{array}\right| d r d \theta=rdrd\theta dxdy=(r,θ)(x,y)drdθ=rxθxryθydrdθ=cosθrsinθsinθrcosθdrdθ=rdrdθ

则(4)经过变量替换后,得到
I 2 = 1 2 π ∫ 0 2 π ∫ 0 ∞ e − r 2 2 r d r d θ I^2=\frac {1} {2\pi} \int_{0}^{2\pi}\int_{0}^{\infty} e^{-\frac{r^2} {2}} r dr d\theta I2=2π102π0e2r2rdrdθ

I 2 = ( 1 2 π ∫ 0 2 π d θ ) ( ∫ 0 ∞ e − r 2 2 r d r ) I^2=(\frac {1} {2\pi} \int_{0}^{2\pi} d\theta)( \int_{0}^{\infty} e^{-\frac{r^2} {2}} r dr) I2=(2π102πdθ)(0e2r2rdr)

I 2 = 1 2 ∫ 0 ∞ e − r 2 2 d r 2 = 1 I^2=\frac{1}{2} \int_{0}^{\infty} e^{-\frac{r^2} {2}} dr^2=1 I2=210e2r2dr2=1

又由于显然有 I > 0 I>0 I>0 ,因此可知
I = 1 2 π ∫ − ∞ ∞ e − x 2 2 d x = 1 (5) I=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} {e^{-\frac{x^2}{2}}} dx=1 \tag{5} I=2π 1e2x2dx=1(5)


3、 N ∼ ( μ , σ 2 ) N\sim(\mu,\sigma^2) N(μ,σ2)的函数积分值

对于一般的正态分布函数
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 (6) f(x)=\frac{1}{\sqrt{2 \pi }\sigma} e^{-\frac{(x-\mu)^{2}} {2\sigma^2}} \tag{6} f(x)=2π σ1e2σ2(xμ)2(6)

x x x 进行变量替换,用 z z z 表示
z = x − μ σ ,     d x = σ d z z = \frac {x-\mu} {\sigma} , ~~~ dx = \sigma dz z=σxμ,   dx=σdz

则该函数的积分值为
I = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π σ ∫ − ∞ + ∞ e − z 2 2 σ d z = 1 (7) I = \frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu)^{2}} {2\sigma^2}} dx = \frac{1}{\sqrt{2 \pi} \sigma}\int_{-\infty}^{+\infty} e^{-\frac{z^{2}} {2}} \sigma dz = 1 \tag{7} I=2π σ1+e2σ2(xμ)2dx=2π σ1+e2z2σdz=1(7)

上式中最后一步利用了(5)中的结果。


4、分析与讨论

    可以看出,不管 σ \sigma σ的值为多少,正态分布密度函数在 ( − ∞ , ∞ ) (-\infty,\infty) (,)上的积分值都为1,函数 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2 \pi }\sigma} e^{-\frac{(x-\mu)^{2}} {2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2中前面系数的分母上的 σ \sigma σ起到了归一化的作用。 σ \sigma σ越大,曲线越矮胖,表示数值的分布越分散,这也与 σ \sigma σ本身的含义一致——标准差。
    但是,如果缺少了前面分母中的 σ \sigma σ,则该函数的积分值与 σ \sigma σ成正比。这需要根据具体的应用场景来确定。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值