【CQF Math Class 数学笔记】

CQF Math Class Notes

Bayes’ Probability

P ( B ∣ A ) = P ( A ∣ B ) ∗ P ( B ) P ( A ) P(B \vert A) = {P(A \vert B) * P(B) \over P(A)} P(BA)=P(A)P(AB)P(B)
or
P ( B ∣ A ) ∗ P ( A ) = P ( A ∩ B ) = P ( B ∩ A ) = P ( A ∣ B ) ∗ P ( B ) P(B \vert A) * P(A) = P(A \cap B) = P(B \cap A) = P(A \vert B) * P(B) P(BA)P(A)=P(AB)=P(BA)=P(AB)P(B)
我们的假设条件是A事件基于B的发生的概率与B事件基于A发生的概率是一样的。
举个例子:从一副牌连续翻出两张K的概率是多少 (大小鬼被剔除)?
K ∩ K = 4 / 52 ∗ 3 / 51 = 1 / 221 ≈ 0.5 % K \cap K = 4/52 * 3/51 = 1/221 \approx 0.5 \% KK=4/523/51=1/2210.5%
我们从上面的例子可以看出,两个条件互换所得出的结果是一样的。从而得出上面贝叶斯概率公式的结论。


The Crazy Intergral and its Rules and Formulas

我们如何来证明这道题?可以说我们基本上把能用的微积分知识和定理都撸了一遍,这是一道非常好的一个练习题:
∫ 1 ( x 2 + 1 ) d x = t a n − 1 x + C \int {1 \over(x^2+1)} dx = tan^{-1}x + C (x2+1)1dx=tan1x+C
= ∫ 1 ( x + i ) ( x − i ) d x = ∫ ( 1 / 2 i ) ( x + i ) d x + ∫ ( − i / 2 i ) ( x − i ) d x = \int {1 \over {(x + i)(x - i)}} dx = \int {(1/2i) \over (x+i)}dx + \int {(-i/2i) \over (x - i)}dx =(x+i)(xi)1dx=(x+i)(1/2i)dx+(xi)(i/2i)dx
= 1 2 i ( l n ( x − i ) − l n ( x + i ) ) = {1 \over 2i} \bigl(ln(x-i)-ln(x+i)\bigr) =2i1(ln(xi)ln(x+i))
这个答案看着好像已经结束了,当时这是不可以的也不应该!因为我们原问题并不包含虚数,所以答案里包含虚数是不合理的,所以要继续简化!
下面我们要用到欧拉恒等式(Euler’s Equation) e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} = \cos \theta + i \sin \theta eiθ=cosθ+isinθ来进行运算:
a + b i = r e i θ a + bi = re^{i \theta} a+bi=reiθ
r = ( a 2 + b 2 ) r = \sqrt{(a^2+b^2)} r=(a2+b2)
θ = t a n − 1 b a \theta = tan^{-1}{b \over a} θ=tan1ab
然后我们继续进行替换:
= 1 2 i ( l n ( x − i ) − l n ( x + i ) ) = 1 2 i ( l n ( ( x 2 + ( − 1 ) 2 ) ∗ e i t a n − 1 − 1 x ) − l n ( ( x 2 + ( 1 ) 2 ) ∗ e i t a n − 1 1 x ) ) = {1 \over 2i} \bigl(ln(x-i)-ln(x+i)\bigr) = {1 \over 2i} \Bigl(ln(\sqrt{(x^2+(-1)^2)}*e^{itan^{-1}{-1 \over x}})-ln(\sqrt{(x^2+(1)^2)}*e^{itan^{-1}{1 \over x}})\Bigr) =2i1(ln(xi)ln(x+i))=2i1(ln((x2+(1)2) eitan1x1)ln((x2+(1)2) eitan1x1))
= 1 2 i ( l n ( x 2 + 1 ) + l n ( e i t a n − 1 − 1 x ) − l n ( x 2 + 1 ) − l n ( e i t a n − 1 1 x ) ) = {1 \over 2i} \Bigl(ln{\sqrt{(x^2+1)}} + ln({e^{itan^{-1}{-1 \over x}}}) - ln{\sqrt{(x^2+1)}} - ln({e^{itan^{-1}{1 \over x}})}\Bigr) =2i1(ln(x2+1) +ln(eitan1x1)ln(x2+1) ln(eitan1x1))
l n ( x 2 + 1 ) 抵消掉 ln{\sqrt{(x^2+1)}}抵消掉 ln(x2+1) 抵消掉 l n ( e ) 抵消掉 ln{(e)}抵消掉 ln(e)抵消掉
t a n − 1 tan^{-1} tan1是一个奇函数(odd function),所以我们可以将(-1/x)的提出负号出来,即:
= 1 2 i ( − 2 i ∗ t a n − 1 1 x ) = − t a n − 1 1 x + C 1 = {1 \over 2i}{\bigl(-2i * tan^{-1}{1 \over x}}\bigr) = -tan^{-1}{1 \over x} + C1 =2i1(2itan1x1)=tan1x1+C1
其实做到这里我们可以算是做完了,我个人觉得老师未必会扣你的分数。但是呢,其实还是可以有一丢丢的优化空间,因为:
t a n − 1 x + c o t − 1 x = π 2 tan^{-1}x + cot^{-1}x = {\pi \over 2} tan1x+cot1x=2π,且 cot ⁡ − 1 x = tan ⁡ − 1 1 x \cot^{-1}x = \tan^{-1}{1 \over x} cot1x=tan1x1,左右移动项得出:
= tan ⁡ − 1 x − π 2 + C 1 = \tan^{-1}x - {\pi \over 2} + C1 =tan1x2π+C1
π 2 + C 1 {\pi \over 2} + C1 2π+C1他们其实都可以看作是常数项,所以可以合并,最终最优解,即:
∫ 1 ( x 2 + 1 ) d x = t a n − 1 x + C \int {1 \over(x^2+1)} dx = tan^{-1}x + C (x2+1)1dx=tan1x+C


Trignometry Formula

cos ⁡ ( α + β ) = cos ⁡ α ∗ cos ⁡ β − sin ⁡ α ∗ sin ⁡ β \cos(\alpha+\beta) = \cos\alpha*\cos\beta - \sin\alpha*\sin\beta cos(α+β)=cosαcosβsinαsinβ
cos ⁡ ( α − β ) = cos ⁡ α ∗ cos ⁡ β + sin ⁡ α ∗ sin ⁡ β \cos(\alpha-\beta) = \cos\alpha*\cos\beta + \sin\alpha*\sin\beta cos(αβ)=cosαcosβ+sinαsinβ
sin ⁡ ( α ± β ) = sin ⁡ α ∗ cos ⁡ β ± cos ⁡ α ∗ sin ⁡ β \sin(\alpha\pm\beta) = \sin\alpha*\cos\beta \pm \cos\alpha*\sin\beta sin(α±β)=sinαcosβ±cosαsinβ

tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α ∗ tan ⁡ β \tan(\alpha+\beta) = {{\tan\alpha+\tan\beta} \over {1-\tan\alpha*\tan\beta}} tan(α+β)=1tanαtanβtanα+tanβ

tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 − tan ⁡ α ∗ tan ⁡ β \tan(\alpha-\beta) = {{\tan\alpha-\tan\beta} \over {1-\tan\alpha*\tan\beta}} tan(αβ)=1tanαtanβtanαtanβ


Forward Kolmogorov Equation

The equation is given by

δ p δ t ′ = C 2 δ 2 p δ y ′ 2 {\delta p \over \delta t'} = C^2{\delta^2p \over \delta y'^2} δtδp=C2δy′2δ2p

for the transition density function p ( y , t ; y ′ , t ′ ) ; c 2 ∈ R p(y,t;y',t');c^2\in \mathbb{R} p(y,t;y,t);c2R, The states (y,t) are past and are fixed while (y’,t’) refers t ofuture ones and are variables. By simple substitution show that

p ( y , t ; y ′ , t ′ ) = 1 2 c π ( t ′ − t ) e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) p(y,t;y',t') = {1 \over 2c\sqrt{\pi(t'-t)}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) p(y,t;y,t)=2cπ(tt) 1exp(4c2(tt)(yy)2) ---- (1.2) satisfies the KFE

show that 1.2.satisfies
∫ − ∞ ∞ p ( y , t ; y ′ , t ′ ) d y ′ = 1 \int_{-\infty}^\infty p(y,t;y',t')dy' = 1 p(y,t;y,t)dy=1

let’s solve this problem.

LHS:

δ p δ t ′ = 1 2 c π ∗ e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) ∗ − 1 2 ( t ′ − t ) 3 2 + 1 2 c π ( t ′ − t ) e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) ∗ ( y ′ − y ) 2 4 c 2 ( t ′ − t ) 2 {\delta p \over \delta t'} = {1 \over 2c\sqrt{\pi}} * exp(-{(y'-y)^2 \over 4c^2(t'-t)}) * -{{1\over2}(t'-t)^{3\over2}} + {1 \over 2c\sqrt{\pi(t'-t)}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) * {(y'-y)^2 \over 4c^2(t'-t)^2} δtδp=2cπ 1exp(4c2(tt)(yy)2)21(tt)23+2cπ(tt) 1exp(4c2(tt)(yy)2)4c2(tt)2(yy)2 ---- product rule

= ( y ′ − y ) 2 − 2 c 2 ( t ′ − t ) 8 c 3 π ( t ′ − t ) 5 2 e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) = {(y'-y)^2-2c^2(t'-t) \over 8c^3\sqrt{\pi}(t'-t)^{5\over2}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) =8c3π (tt)25(yy)22c2(tt)exp(4c2(tt)(yy)2)

RHS:

δ p δ y ′ = 1 2 c π ( t ′ − t ) ∗ e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) ∗ − 2 ( y ′ − y ) 4 c 2 ( t ′ − t ) {\delta p \over \delta y'} = {1 \over 2c\sqrt{\pi(t'-t)}} * exp(-{(y'-y)^2 \over 4c^2(t'-t)}) * {-2(y'-y) \over 4c^2(t'-t)} δyδp=2cπ(tt) 1exp(4c2(tt)(yy)2)4c2(tt)2(yy)

= − ( y ′ − y ) ( 4 c 3 π ( t ′ − t ) 3 2 ∗ e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) =-{(y'-y)\over(4c^3{\sqrt\pi}(t'-t)^{3\over2}} * exp(-{(y'-y)^2 \over 4c^2(t'-t)}) =(4c3π (tt)23(yy)exp(4c2(tt)(yy)2)

δ 2 p δ y ′ 2 = − 1 ( 4 c 3 π ( t ′ − t ) 3 2 ∗ e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) − ( y ′ − y ) ( 4 c 3 π ( t ′ − t ) 3 2 ∗ e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) ∗ − 2 ( y ′ − y ) 4 c 2 ( t ′ − t ) {\delta^2 p \over \delta y'^2}=-{1\over(4c^3{\sqrt\pi}(t'-t)^{3\over2}} * exp(-{(y'-y)^2 \over 4c^2(t'-t)}) - {(y'-y)\over(4c^3{\sqrt\pi}(t'-t)^{3\over2}} * exp(-{(y'-y)^2 \over 4c^2(t'-t)}) * {-2(y'-y) \over 4c^2(t'-t)} δy′2δ2p=(4c3π (tt)231exp(4c2(tt)(yy)2)(4c3π (tt)23(yy)exp(4c2(tt)(yy)2)4c2(tt)2(yy)

= ( y ′ − y ) 2 − 2 c 2 ( t ′ − t ) ( 8 c 5 π ( t ′ − t ) 5 2 ∗ e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) ={(y'-y)^2-{2c^2(t'-t)}\over(8c^5{\sqrt\pi}(t'-t)^{5\over2}} * exp(-{(y'-y)^2 \over 4c^2(t'-t)}) =(8c5π (tt)25(yy)22c2(tt)exp(4c2(tt)(yy)2)

Hence: L H S = δ p δ t ′ = ( y ′ − y ) 2 − 2 c 2 ( t ′ − t ) 8 c 3 π ( t ′ − t ) 5 2 e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) = C 2 δ 2 p δ y ′ 2 = R H S LHS = {\delta p \over \delta t'} = {(y'-y)^2-2c^2(t'-t) \over 8c^3\sqrt{\pi}(t'-t)^{5\over2}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) = C^2{\delta^2p \over \delta y'^2} = RHS LHS=δtδp=8c3π (tt)25(yy)22c2(tt)exp(4c2(tt)(yy)2)=C2δy′2δ2p=RHS

we know that ( y ′ − y ) 2 − 2 c 2 ( t ′ − t ) 8 c 3 π ( t ′ − t ) 5 2 e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) {(y'-y)^2-2c^2(t'-t) \over 8c^3\sqrt{\pi}(t'-t)^{5\over2}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) 8c3π (tt)25(yy)22c2(tt)exp(4c2(tt)(yy)2) is a common solution to FKE, then let’s see if its PDF is equal to 1 as all PDF should sum up to 1.

∫ − ∞ ∞ p ( y , t ; y ′ , t ′ ) d y ′ = ∫ − ∞ ∞ 1 2 c π ( t ′ − t ) e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) d y ′ \int_{-\infty}^\infty p(y,t;y',t')dy' = \int_{-\infty}^\infty {1 \over 2c\sqrt{\pi(t'-t)}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) dy' p(y,t;y,t)dy=2cπ(tt) 1exp(4c2(tt)(yy)2)dy

from observation, it is better to use chain rule in this situation, and it’ll make things a lot easier.

let u = ( y ′ − y ) 2 c ( t ′ − t ) u ={(y'-y) \over 2c{\sqrt(t'-t)}} u=2c( tt)(yy) then d u d y ′ = 1 2 c ( t ′ − t ) {du \over dy'} = {1 \over {2c {\sqrt{(t'-t)}}}} dydu=2c(tt) 1, thus d y ′ = 2 c ( t ′ − t ) d u dy' = {2c {\sqrt{(t'-t)}}}du dy=2c(tt) du

∫ − ∞ ∞ 1 2 c π ( t ′ − t ) e x p ( − ( y ′ − y ) 2 4 c 2 ( t ′ − t ) ) d y ′ ⇒ 1 2 c π ( t ′ − t ) ∗ ∫ − ∞ ∞ e − u 2 d u ∗ 2 c ( t ′ − t ) = 1 π ∗ ∫ − ∞ ∞ e − u 2 d u = 1 \int_{-\infty}^\infty {1 \over 2c\sqrt{\pi(t'-t)}}exp(-{(y'-y)^2 \over 4c^2(t'-t)}) dy' \Rightarrow {1 \over 2c\sqrt{\pi(t'-t)}} * {\int_{-\infty}^\infty e^{-u^2}}du * {2c {\sqrt{(t'-t)}}} = {1 \over \sqrt\pi} * {\int_{-\infty}^\infty e^{-u^2}}du = 1 2cπ(tt) 1exp(4c2(tt)(yy)2)dy2cπ(tt) 1eu2du2c(tt) =π 1eu2du=1

why? because ∫ − ∞ ∞ e − u 2 d u = π {\int_{-\infty}^\infty e^{-u^2}}du = \sqrt\pi eu2du=π is known by definition. and we are done with this quesiton.

— 待更 —

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mike_Leigh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值