Keras学习(三)—— Regerssion回归实例

代码

是跟着b站莫凡教程学习的,感兴趣的可以去听一下

import numpy as np
np.random.seed(1337)
# for reproducibility
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt

# create some data
X = np.linspace(-1, 1, 200)
np.random.shuffle(X) # randomize the data
Y = 0.5 * X +2+np.random.normal(0, 0.05, (200,))

# plot data
plt.scatter(X,Y)
plt.show()

X_train, Y_train = X[:160], Y[:160] # first 160 data points
X_test, Y_test = X[160:], Y[160:] # last 40 data points

# build a neural network from the 1st layer
model = Sequential()
model.add(Dense(output_dim=1, input_dim=1)) # add layer

# choose loss function and optimizing method
model.compile(loss='mse', optimizer='sgd')

# training
print('Training------')
for step in range(301):
    cost=model.train_on_batch(X_train,Y_train)
    if step % 100 == 0:
        print('train cost:', cost)

# test
print('\nTestig------')
cost = model.evaluate(X_test, Y_test, batch_size=40)
print('test cost:', cost)
W,b=model.layers[0].get_weights()
print('Weights=', W, '\nbiases=', b)

# plotting the prediction
Y_pred = model.predict(X_test)
plt.scatter(X_test, Y_test)
plt.plot(X_test, Y_pred)
plt.show()

运行结果:

生成随机数据:
在这里插入图片描述

训练和验证数据:
在这里插入图片描述

得到的回归图:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值