本文针对空调、汽车的散热器模块进行simulink建模
散热器主要由冷却水箱(或冷却水管)、风扇、控制器组成
散热能力主要由水流速度,开风扇数量,进出口温差、平均温度等决定,
本文主要探讨稳定状态下的散热器模型,即进出口温差恒定,平均温度恒定的系统。
此时,散热能力由水流速度,开风扇数量决定。
为此,本文建立一个二输入(水流流速、开风扇数量),一输出(散热量)的控制系统模型
一、建立数据曲面
2 3 4 5(风扇数量)
18.16 21.48 23.53 25.01 20
19.1 23.06 25.61 27.49 25
19.75 24.2 27.14 29.36 30
20.22 25.05 28.32 30.82 35
20.57 25.73 29.26 32 40
20.86 26.27 30.03 32. 98 45
21.08 26.72 30.68 33.81 50(水流速)
方便描述,对上述数据取整(因只是讲述原理,非实际项目)
得
Z=[ 18, 21, 24, 25;19, 23, 26,27;20, 24,27, 29;20, 25, 28, 31;21, 26, 29, 32;21, 26, 30, 33;21, 27, 31, 34]
%数据
x=2:1:5
%风扇数量
y=20:5:50
%水流速
mesh(x,y,Z)
%绘制三维曲面
结果如图1
图1
二、函数拟合
在命令行输入cftool打开函数拟合工具,如图2
图2
选择输入输出量后如图3
图3
选择二元二次函数进行拟合(考虑到计算复杂性,在要求正常精度的场合,选择二次函数拟合足够),如图4
图4
拟合曲面见图5
图5
拟合函数见图6
图6
可见,平方误差和SSE为1.658,均方根误差RMSE为0.2747,R-square表征拟合程度,值为0.9962,因此该拟合函数拟合效果较良好,拟合函数为:
Z= f(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2
p00 = 3.595
p10 = 5.146
p01 = 0.271
p20 = -0.5714
p11 = 0.06357
p02 = -0.004167
即
Z=3.595+5.146*x+0.271*y-0.5714*x^2+0.06357*x*y-0.004167*y^2
三、检验结果
打开simulink,建立函数模型如图7
图7
双击该模块,建立函数如图7
图7
function Z = fcn(x,y)
Z=3.595+5.146*x+0.271*y-0.5714*x^2+0.06357*x*y-0.004167*y^2;
建立测试模型如图8,输入风扇数量为3,水流流速为35
仿真结果如图9
图9
原始数据中,风扇数量3,水流速35对应的散热量为25,误差为0.05,因此本系统具有良好的拟合性能