散热器的simulink建模

4 篇文章 0 订阅
1 篇文章 0 订阅
本文通过Simulink建立了针对空调和汽车散热器的二输入一输出控制系统模型,研究水流速度和开风扇数量对散热量的影响。使用数据拟合工具,采用二元二次函数对实验数据进行拟合,得到高精度的拟合函数,并在Simulink中验证了模型的准确性,误差较小,表明模型具有良好拟合性能。
摘要由CSDN通过智能技术生成

本文针对空调、汽车的散热器模块进行simulink建模

散热器主要由冷却水箱(或冷却水管)、风扇、控制器组成

散热能力主要由水流速度,开风扇数量,进出口温差、平均温度等决定,

本文主要探讨稳定状态下的散热器模型,即进出口温差恒定,平均温度恒定的系统。

此时,散热能力由水流速度,开风扇数量决定。

为此,本文建立一个二输入(水流流速、开风扇数量),一输出(散热量)的控制系统模型

一、建立数据曲面

2        3        4          5(风扇数量)

18.16 21.48 23.53 25.01           20

 19.1 23.06 25.61 27.49            25

 19.75 24.2 27.14 29.36            30

 20.22 25.05 28.32 30.82          35

 20.57 25.73 29.26 32               40

 20.86 26.27 30.03 32. 98         45

 21.08 26.72 30.68 33.81          50(水流速)

方便描述,对上述数据取整(因只是讲述原理,非实际项目)

Z=[ 18, 21, 24, 25;19, 23, 26,27;20, 24,27, 29;20, 25, 28, 31;21, 26, 29, 32;21, 26, 30, 33;21, 27, 31, 34]

%数据

x=2:1:5

%风扇数量

y=20:5:50

%水流速

mesh(x,y,Z)

%绘制三维曲面

结果如图1

 图1

二、函数拟合

在命令行输入cftool打开函数拟合工具,如图2

图2 

选择输入输出量后如图3

 图3

选择二元二次函数进行拟合(考虑到计算复杂性,在要求正常精度的场合,选择二次函数拟合足够),如图4

 图4

拟合曲面见图5

 图5

拟合函数见图6

 图6

可见,平方误差和SSE为1.658,均方根误差RMSE为0.2747,R-square表征拟合程度,值为0.9962,因此该拟合函数拟合效果较良好,拟合函数为:

 Z= f(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2
       p00 =       3.595 
       p10 =       5.146 
       p01 =       0.271
       p20 =     -0.5714 
       p11 =     0.06357
       p02 =   -0.004167 

Z=3.595+5.146*x+0.271*y-0.5714*x^2+0.06357*x*y-0.004167*y^2

三、检验结果

打开simulink,建立函数模型如图7

图7

 双击该模块,建立函数如图7

 图7

function Z = fcn(x,y)

Z=3.595+5.146*x+0.271*y-0.5714*x^2+0.06357*x*y-0.004167*y^2;

建立测试模型如图8,输入风扇数量为3,水流流速为35

 仿真结果如图9

图9

原始数据中,风扇数量3,水流速35对应的散热量为25,误差为0.05,因此本系统具有良好的拟合性能

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值