6D三维旋转的浅析

参考文章链接:
知乎:最适合深度学习的三维旋转表示
pytorch旋转矩阵转四元数及各种旋转表示方式之间的转换实现代码

CVPR19的论文《On the Continuity of Rotation Representations in Neural Networks》
这篇文章分析比较了旋转矩阵,欧拉角,四元数等常见三维旋转表示对神经网络训练的影响,并提出了一种适合深度学习的 6D三维旋转表示方法。

不连续(Continiuous)的旋转表示不是好的旋转表示

在这里插入图片描述

右图中表示的是用几何圆表示的旋转一周,左图是用数值表示的旋转一周,为方便理解,我补充了图中红字
右图从45度到-45度是连续的,但是在左图的数值反映是不连续的,【0–π/4】和【7π/4–2π】

### 关于6D三维重建的技术信息 #### 被动视觉三维重建方法 被动视觉三维重建仅依赖摄像机获取的二维图像,通过分析这些图像中的纹理和其他特性来恢复场景的深度信息并完成三维建模[^1]。然而,这种传统意义上的三维重建主要关注的是位置(x, y, z)三个维度的信息。 #### 扩展到六维(6D)的概念 当提到6D三维重建时,通常是指不仅考虑物体的空间坐标(x, y, z),还包括姿态角(roll, pitch, yaw)在内的六个自由度。这意味着除了确定对象的位置外,还需要精确估计其方向和角度。这在机器人学、增强现实等领域尤为重要,因为准确的姿态估计可以显著提高系统的性能。 #### 使用Occupancy Networks进行复杂结构的表示 为了处理更复杂的几何形态以及提供更高精度的姿态预测,在某些情况下可能会采用基于学习的方法如Occupancy Networks。这种方法可以通过隐式的函数表达形式有效地捕捉细粒度细节,并且支持多种类型的输入数据源(比如单张图片或者带噪点云),从而实现高质量的6D位姿重建[^2]。 #### SFS算法的应用潜力 另外一种可能用于辅助6D重建过程的技术是从阴影恢复形状(SFS)[^3]。虽然SFS主要用于解决标准的3D重建问题,但是它所提供的有关表面法线向量的信息也可以帮助改进对物体朝向的理解,间接有助于提升整体6D参数化的准确性。 ```python import numpy as np def estimate_6d_pose(image_data): """ 基于给定的图像数据估算目标物的6D位姿 参数: image_data (np.ndarray): 输入图像的数据矩阵 返回: tuple: 包含平移分量(tx, ty, tz)和旋转分量(rx, ry, rz)的元组 """ # 这里只是一个示意性的框架,实际应用中需要具体化每一步骤的具体实现逻辑 depth_map = compute_depth_from_image(image_data) surface_normals = calculate_surface_normal(depth_map) pose_parameters = infer_pose(surface_normals) return pose_parameters[:3], pose_parameters[3:] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值