线性回归、逻辑回归、正则化小结

小结(一)

学了两周,整理一下笔记。

课程笔记总览传送门:https://blog.csdn.net/weixin_42900928/article/details/86523192


目录

小结(一)

1.线性回归

1.1 无正则化

1.2 正则化

2.逻辑回归

2.1 无正则化

2.2 正则化


1.线性回归

1.1 无正则化

(1)假设函数

一般形式:h_{\theta}(x)=\theta_{0}+\theta_{1}x_{1}+\theta_{2}x_{2}+...+\theta_{n}x_{n}

为了方便实现,转换为矩阵形式:

h_{\theta}(x)=\theta_{0}x_{0}+\theta_{1}x_{1}+\theta_{2}x_{2}+...+\theta_{n}x_{n}=\theta^{T}x=[\theta_{0},\theta_{1},\theta_{2},...,\theta_{n}][x_{0},x_{1},x_{2},...,x_{n}]^{T}

(2)代价函数

J(\theta)=\tfrac{1}{2m}\sum ^{m}_{i=1}(h_{\theta}(x^{i})-y^{(i)})^{2}= \tfrac{1}{2m}\sum ^{m}_{i=1}(\theta_{0}+\theta_{1}x^{(i)}+...+\theta_{n}x^{i}-y^{(i)})^{2}

(3)梯度下降

\theta_{0} 和其它 \theta_{} 分别考虑。

\theta_{0}:\theta_{0}-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{0}^{(i)}\: \: (x_{0}^{(i)}=1) ;

\theta_{j}:\theta_{j}-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{j}^{(i)}

注:——学习率 \alpha 后看似毫无道理的数学公式其实是  \frac{\partial }{\partial \theta_{j}}J(\theta) 的结果;

——同时迭代。

——每个 \theta_{j} 内部都是一个loop。

(4)正规方程

\theta=(X^{T}X)^{-1}X^{T}y  (X 又称设计矩阵)

注:再次提醒,这里的 \theta 是 (n+1) x 1 的矩阵;X 是 m x (n+1) 的矩阵(包含x0=1);y 是 m x 1的矩阵。(都是矩阵!!!)

 

1.2 正则化

(1)假设函数

不变

(2)代价函数

J(\theta)=\tfrac{1}{2m}[\sum ^{m}_{i=1}(h_{\theta}(x^{i})-y^{(i)})^{2}{\color{Red} +\lambda\sum_{j=1}^{n}\theta_{j}^{2}}]

(3)梯度下降

\theta_{0}:\theta_{0}-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{0}^{(i)}\: \: (x_{0}^{(i)}=1)

\theta_{j}:\theta_{j}-\alpha[\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{j}^{(i)}{\color{Red} +\frac{\lambda}{m}\theta_{j}}]=\theta_{j}(1{\color{Red} -\alpha\frac{\lambda}{m}})-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{j}^{(i)}

 

(4)正规方程

\theta=(X^{T}X{\color{Red} +\lambda\begin{bmatrix} 0 & & & \\ & 1 & & &\\ & & 1 & &\\ & & & ... &\\ & & & & 1 \end{bmatrix}})^{-1}X^{T}y


2.逻辑回归

2.1 无正则化

(1)假设函数

h_{(\theta)}x=\frac{1}{1+e^{-\theta^{T}}x}

(2)代价函数

J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^{(i)}logh_{\theta}(x^{(i)})+(1-y^{(i)})log(1-h_{\theta}(x^{(i)})]

(3)梯度下降

\theta_{0} 和其它 \theta_{} 分别考虑。

\theta_{0}:\theta_{0}-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{0}^{(i)}\: \: (x_{0}^{(i)}=1) ;

\theta_{j}:\theta_{j}-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{j}^{(i)}

(4)高级算法

BFGS、L-BFGS

 

2.2 正则化

(1)假设函数

h_{(\theta)}x=\frac{1}{1+e^{-\theta^{T}}x}

(2)代价函数

J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^{(i)}logh_{\theta}(x^{(i)})+(1-y^{(i)})log(1-h_{\theta}(x^{(i)}){\color{Red} +\lambda\sum_{j=1}^{n}\theta_{j}^{2}}]

(3)梯度下降

\theta_{0}:\theta_{0}-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{0}^{(i)}\: \: (x_{0}^{(i)}=1)

\theta_{j}:\theta_{j}-\alpha[\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{j}^{(i)}{\color{Red} +\frac{\lambda}{m}\theta_{j}}]=\theta_{j}(1{\color{Red} -\alpha\frac{\lambda}{m}})-\alpha\tfrac{1}{m}\sum _{i=1}^{m}(h_{\theta}(x^{i})-y^{(i)})x_{j}^{(i)}

(4)高级算法

正则化的高级算法

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值