批量学习(离线学习):
如果未加特殊说明都可以用批量学习,批量学习就是,训练好一个模型投入生产环境后,不再用样本进行优化。
有点:简单
缺点:每次重新批量学习,运算量巨大,在某些快速变化的环境中是不适应的
在线学习:
与批量学习差别在于,不浪费样例,不断进行优化;也适用于数据量巨大,完全无法批量学习的环境。
优点:及时反映新的变化环境
缺点:新的数据带来不好的变化,需要加强对数据的监控
参数学习:
用数据训练算法获取想要的参数,拥有参数后,就不再需要原数据集
非参数学习:
不对模型进行过多的假设,原数据集依旧有用。
PS:非参数学习不代表没参数。
题外话:
怎么选择机器学习算法?
1、奥卡姆的剃刀:简单就是好的
2、没有免费的午餐:任意两个算法,他们的期望性能是相同的,即所有的算法都一样好,只有具体到某个特定的问题才能进行选择算法