【机器学习入门】3、其他学习分类

批量学习(离线学习)
如果未加特殊说明都可以用批量学习,批量学习就是,训练好一个模型投入生产环境后,不再用样本进行优化。
有点:简单

缺点:每次重新批量学习,运算量巨大,在某些快速变化的环境中是不适应的

在线学习
与批量学习差别在于,不浪费样例,不断进行优化;也适用于数据量巨大,完全无法批量学习的环境。
在这里插入图片描述
优点:及时反映新的变化环境
缺点:新的数据带来不好的变化,需要加强对数据的监控

参数学习
用数据训练算法获取想要的参数,拥有参数后,就不再需要原数据集

非参数学习
不对模型进行过多的假设,原数据集依旧有用。
PS:非参数学习不代表没参数。

题外话:

怎么选择机器学习算法?
1、奥卡姆的剃刀:简单就是好的
2、没有免费的午餐:任意两个算法,他们的期望性能是相同的,即所有的算法都一样好,只有具体到某个特定的问题才能进行选择算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值