【一文读懂什么是智能体、工作流、大模型、RAG、提示词】

一、智能体(Agent)

1、特点:

动态规划、工具调用、自主决策,是会自己动脑动手的AI助手,能规划、执行复杂任务。 一般都会对外提供api接口 。

AI Agent 是一种能够基于任务目标执行多步骤动作的系统,它能通过调用工具、API 或知识库,动态规划并完成复杂任务。Agent 具备一定程度的自主决策能力。

2、智能体组成部分:

  • 记忆:短期记忆(上下文窗口)和长期记忆(向量数据库)。
  • 规划:拆解复杂任务为可执行步骤。
  • 执行器:调用工具或API完成具体动作。
  • 工具使用:扩展能力边界(如搜索API、代码执行器)

二、工作流(Workflow)

1、特点

AI的“自动流水线”,可以拉取节点一步步搞定固定任务(比如自动生成SQL、获取指定数据)。

2、工作流组成部分

工作流由大模型、代码、知识库、工具、条件分支、意图分类、循环、结束等节点一系列组成。

三、大模型(LLM)

1、特点

大模型就像超级大脑,能聊天、写作、分析数据、画图、生成视频等,知识量巨大。

大模型(LLM)是基于深度学习的超大规模语言模型,利用庞大的文本数据集进行训练的机器学习模型,它具备生成自然流畅的语言文本以及准确理解语言文本深层语义的能力。大语言模型广泛应用于各种自然语言处理任务,包括但不限于文本分类、智能问答以及人机交互对话等,是 AI 领域的重要支柱之一。

2、主流模型

现在的主流模型有GPT系列、Qwen系列、deepseek系列、ChatGLM系列、Gemini系列、Claude系列等

四、提示词(Prompt)

1、特点

提示词就想我们给AI的“任务说明书”,决定它怎么回答我们。

提示词(Prompt)在大模型应用中扮演着关键角色,它是用户输入给模型的一段文本指令 。简单来说,就是我们向大模型提出问题、请求或描述任务时所使用的文字内容。

有些场景下,我们不希望智能体自由发挥,而是遵循我们给出的规则逐步进行,就需要用到提示词,比如批量投诉预警分析,我希望智能体按以下步骤进行:

分类统计

关键字核验

风险判定

模板化输出

2、提示词设计方法

目前已经形成了很多提示词编写框架,可以帮助我们提高效率,这里也分享一些框架,不同的框架有不同的适用场景

2.1、ICIO 框架

特点

  • ICIO 框架关注任务的明确性和输出的格式。
  • 它包含四个主要部分:任务(Instruction)、背景(Context)、输入数据(Input Data)、输出指示(Output Indicator)。

适用场景

  • 数据处理与转换:如数据清洗、文本翻译或图像转换。
  • 内容创作:如撰写报告、创作诗歌或设计图像。
  • 技术任务:如编码或算法设计。
  • 教育与培训:提供特定领域的知识或技能培训。

使用方法: 以翻译任务为例:

# Instruction
描述:请将以下的法文段落翻译成英文。
重要性:翻译的准确性对于我们的商务报告至关重要。
# Context
场景:这段法文将用于我们公司的年度商务报告。
目的:报告将呈现给公司的股东和潜在投资者,所以翻译需要准确且专业。
# Input Data
"La croissance économique de la France a été stable au cours des dernières années, malgré les défis mondiaux."
# Output Indicator
风格:正式和专业的商务英文风格。
注意事项:请确保翻译内容无语法错误,并保持原文的意思。
2.2、 CRISPE 框架

特点

  • CRISPE 框架注重 AI 的角色和背景。
  • 它包含五个部分:能力与角色(Capacity and Role)、洞察力(Insight)、声明(Statement)、个性(Personality)、实验(Experiment)。

适用场景

  • 角色扮演与模拟:如模拟医生、律师或教师提供专业建议。
  • 情境模拟:如模拟商务谈判、心理咨询或角色扮演游戏。
  • 个性化互动:希望 AI 具有特定的性格或风格进行互动。
  • 多样化输出:从 AI 那里获得多种不同的答案或建议。

使用方法: 以数学老师角色为例:

# Capacity and Role
描述:我希望你扮演一名经验丰富的小学数学老师。
特点:具备耐心和鼓励性的教学风格,能够简单明了地解释数学概念。
# Insight
学生信息:你将为我的10岁的儿子提供帮助,他目前正在学习小学四年级的数学。
学习环境:他在家中进行在线学习,有时会遇到一些数学问题需要帮助。
# Statement
描述:请帮助解答以下数学问题,并提供解题步骤。
重要性:确保解答方法适合10岁儿童的理解能力。
# Personality
风格:友好、鼓励性,使用简单易懂的语言。
示例:可以使用实际生活中的例子来解释数学概念。
# Experiment
描述:如果可能,请为每个问题提供两种不同的解题方法。
目的:增强孩子的数学思维和解题能力。
2.3.、BROKE 框架

特点

  • BROKE 框架强调任务的背景、角色、目标、关键输出和持续改进。
  • 它包含五个部分:背景(Background)、角色(Role)、目标(Objectives)、关键结果(Key Result)、改进(Evolve)。

适用场景

  • 项目管理与协作:帮助管理项目、分配任务或协调团队合作。
  • 创意与设计:提供创意建议、设计方案或艺术创作。
  • 研究与分析:进行数据分析、市场研究或学术研究。

使用方法: 以项目经理角色为例:

# Background
项目描述:我们正在启动一个新的软件开发项目,目标是为中小企业提供一款高效的财务管理工具。
团队组成:项目团队由5名开发人员、2名设计师、1名测试工程师和1名产品经理组成。
# Role
描述:我希望你扮演一名经验丰富的项目经理。
特点:具备出色的项目管理技能,能够确保项目按时完成并满足预定的质量标准。
# Objectives
描述:请帮助我们制定一个详细的项目计划,包括项目的各个阶段、关键里程碑、资源分配和风险管理。
# Key Result
输出格式:项目计划应以Gantt图的形式呈现,并包括每个任务的开始和结束日期、负责人和依赖关系。
关键指标:确保项目计划考虑到所有潜在的风险,并为每个风险提供了相应的应对策略。
# Evolve
反馈机制:在项目计划制定完成后,请提供一个反馈机制,以便团队成员可以提出他们的建议和改进意见。
迭代:根据团队的反馈和项目进展,每两周对项目计划进行一次迭代和更新。
持续监控:提供一个机制,以便我们可以实时监控项目的进展和状态。
2.4、 RASCEF 框架

特点

  • RASCEF 框架提供了一个全面的结构,涵盖角色、行动、步骤、上下文、示例和格式。
  • 它包含六个部分:角色(Role)、行动(Action)、步骤(Script)、上下文(Content)、示例(Example)、格式(Format)。

适用场景

  • 专业咨询与建议:如营销策略、财务规划或法律咨询。
  • 任务执行与流程管理:如项目管理、事件策划或销售流程。

使用方法: 以电子邮件营销人员角色为例:

# Role
描述:我希望你扮演一名经验丰富的电子邮件营销人员。
特点:具备出色的市场分析能力,了解当前的电子邮件营销趋势和最佳实践。
# Action
任务:请为我们制定一个电子邮件营销策略,包括目标受众、内容策划和发送频率。
# Script
1.分析目标受众的特点和需求。
2.设计电子邮件的内容和格式。
3.制定发送计划和频率。
4.设计跟踪和分析反馈的机制。
# Content
公司背景:我们是一家新兴的健康食品品牌,目标受众为20-40岁的健康生活爱好者。
营销目标:提高品牌知名度,增加网站流量和促进产品销售。
# Example
内容建议:可以设计一系列关于健康饮食的小贴士,每周发送一次。
风格:友好、鼓励性,使用简单易懂的语言。
# Format
电子邮件模板:使用清晰的标题、引人入胜的图片和简洁的文本内容。
响应式设计:确保电子邮件在各种设备上都能正常显示。

六、检索增强生成(RAG)

1、特点

AI的“外挂知识库”,先查资料再回答,避免瞎编。

RAG 是一种结合检索和生成的技术,通过从外部知识库中检索相关信息,再由生成模型(如 GPT 系列)基于检索到的信息生成响应。这种方法解决了大语言模型(LLM)固有知识可能不准确或过时的问题。

2、RAG组成部分

大致由以下三大块组成:

  • 数据工程(基于本地文档,对数据进行加载、解析,解析完成之后生成知识文档,对知识文档进行切割,形成知识切片,将知识切片向量化,存入向量知识库)
  • 数据检索(用户提出问题,将问题向量化,根据相似度到向量数据库中进行检索,对检索到的内容进行合并解析,结合提示词模板,生成提示词给到大模型)
  • 增强生成(大模型进行增强生成,回答用户问题)

在这里插入图片描述

3、RAG的缺陷

  • 检索精度不足
  • 生成内容不完整(切片)
  • 缺乏大局观(切片)
  • 多轮检索能力弱
  • 对图片、公式等内容的识别准确度低下

由此出现了多模态RAG|GraphRAG|MCP+数据库等技术

### GraphRAG介绍 GraphRAG是一种结构化、分层的检索增强生成(Retrieval-Augmented Generation, RAG)方法,旨在处理复杂的非结构化数据并将其转化为可查询的知识图谱。这种方法不仅能够提升自然语言处理(NLP)任务中的问答性能,还能够在推理复杂信息方面表现出色[^5]。 #### 特点 - **知识图谱的应用**:与传统的仅依赖于文本片段进行匹配的方法不同,GraphRAG强调了知识图谱的重要性。它可以从原始文档中抽取实体及其关系,并以此为基础建立一个富含语义的信息网络。 - **层次化的社区构建**:通过对知识点之间的关联度分析来创建具有逻辑性的社群划分,从而使得机器学习模型更容易理解和利用这些结构性的数据来进行更精准的回答生成。 - **自动摘要功能**:针对每一个识别出来的主题域自动生成简洁明了的小结,帮助减少冗余的同时也提高了效率。 ### 安装指南 对于想要快速上手的人来说,在官方提供的预编译版本里可以直接体验到GraphRAG的强大之处;而对于那些希望深入定制或优化特定应用场景下的表现,则建议从源代码开始搭建开发环境[^4]。 准备阶段主要涉及Python虚拟环境配置以及必要的第三方库安装: ```bash conda create -n graphrag_env python=3.8 source activate graphrag_env pip install neo4j langchain streamlit ... ``` 完成上述操作后就可以按照指引进一步探索如何将自己的数据集导入系统内,并启动交互式的Web界面用于测试目的。 ### 实际运用场景举例 假设有一个医疗健康领域的企业希望通过引入先进的AI技术改善客户服务体验。借助GraphRAG框架,企业可以将内部积累下来的大量病历资料整理成易于计算机理解的形式——即所谓的“医学术语网”,进而支持客服机器人更加准确地解答患者咨询的问题,甚至辅助医生做出诊断决策。 ### Python命令行工具 要初始化整个工作流,只需一条简单的指令就能让程序跑起来,这背后涉及到一系列自动化脚本负责完成诸如索引建设等工作[^3]: ```python python -m graphrag.index ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值