【论文分享】U-Net: Convolutional Networks for Biomedical Image Segmentation

概要

在这里插入图片描述

U-net架构(以最低分辨率为32x32像素为例)。每个蓝色框表示一个多通道特征图通道数显示在框的顶部。x-y尺寸标注在框的左下角。白色框表示复制的特征图。箭头表示不同的操作。

U-Net 是一种经典的卷积神经网络架构,最初由 Olaf Ronneberger 等人在 2015 年提出,用于生物医学图像分割任务。它具有对称的 “U” 形结构,适合处理像素级别的图像分割问题。下面通过步骤解释什么是 U-Net,以及它的构成和工作原理。


1. 什么是 U-Net?

U-Net 是一种全卷积网络(Fully Convolutional Network, FCN),设计用于图像分割任务。它的主要目的是对每个像素进行分类(如标记某像素属于前景还是背景)。U-Net 的架构呈现对称的 “U” 形,由编码器解码器两部分组成。


2. U-Net 的基本组成

U-Net 的架构分为两个部分:

  • 编码器(Encoder):负责提取图像的特征,通常由卷积和池化操作构成。
  • 解码器(Decoder):逐步恢复图像的空间分辨率,生成与输入图像相同大小的分割图。

此外,U-Net 还引入了跳跃连接(Skip Connections),用来结合编码器中提取的特征和解码器中的特征。


3. U-Net 的工作原理

Step 1: 输入图像

  • 输入一张二维(或三维)图像。
  • 图像的尺寸通常固定,比如: 256 × 256 256 \times 256 256×256

Step 2: 编码器提取特征

  • 编码器由一系列卷积层ReLU 激活函数和 **最大池化层(Max Pooling)**组成。
  • 每次通过卷积提取特征后,池化层会将图像的空间分辨率减半。
  • 编码器逐渐捕捉图像的全局语义信息,同时丢失部分位置信息

Step 3: 解码器逐步恢复空间分辨率

  • 解码器由**反卷积(转置卷积)上采样层(Up-sampling)**和卷积层组成。
  • 通过上采样操作,解码器逐步将低分辨率的特征图还原为输入图像的原始尺寸。
  • 解码器负责生成分割图,预测每个像素的类别。

Step 4: 跳跃连接合并特征

  • 为了结合编码器中高分辨率的特征解码器中的低分辨率特征,U-Net 引入了跳跃连接
  • 跳跃连接将编码器中对应的特征图与解码器中的特征图拼接(通常是按通道维度)。
  • 这种设计能够保留更多的细节信息,提升分割精度。

Step 5: 最终输出分割图

  • 解码器最后输出一个与输入图像相同大小的特征图,每个像素值表示该像素属于某个类别的概率。
  • 如果是二分类任务(如前景和背景),输出为单通道的概率图;如果是多分类任务,输出为多通道图像(每个通道对应一个类别的概率)。

4. 结构细节

编码器部分

  • 每个卷积模块由两个 3 × 3 3 \times 3 3×3 卷积层组成,后接 ReLU 激活函数
  • 使用 2 × 2 2 \times 2 2×2最大池化操作降低分辨率。

解码器部分

  • 每个解码模块由一个上采样操作(通常是反卷积)和一个卷积模块组成。
  • 在上采样后的特征图中加入来自编码器的跳跃连接的特征图

5. U-Net 的关键特点

  1. 对称性:U-Net 是对称的,编码器和解码器结构相对对称,呈现 “U” 形。
  2. 跳跃连接:融合了高分辨率和低分辨率特征,使分割结果更加准确。
  3. 全卷积:所有层都是卷积层,避免了全连接层对输入大小的限制。
  4. 高效性:在分割任务中具有较高的效率和精度,特别适合生物医学图像。

6. 应用场景

  • 医学图像分割(如分割肿瘤区域、器官轮廓等)
  • 遥感图像分析(如分割道路、建筑物等)
  • 自动驾驶(如分割行人、车辆等)
  • 语义分割任务(如场景理解)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FOUR_A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值