引言
在AI时代,视觉从来不是点缀,而是传播力的核心。
做一张高质量图像,能帮你吸引注意、强化表达、提高转化,而AI绘图让这件事变得前所未有的简单——不需要学画画,也不用懂美术,只要你会写一句话,就能生成一张图。
AI绘图的本质不是“画图”,而是“用文字控制视觉生成”。你告诉AI“想要什么”,它就能即时构建一张原创画面:无论是头像、插图、KV、封面,还是故事分镜、商品展示、课程图集,全都能一键搞定。
这意味着——只要你掌握提示词的写法+选对绘图工具,就可以像用文字沟通一样,批量生成图像资源,甚至将其打包成可售服务,实现变现。
本章将带你从“不会画图”走向“能接图片制作商单”:
-
你会学会用提示词控制图像结构、风格、细节与一致性;
-
你会了解不同AI绘图工具(如Recraft、GPT-4o、Midjourney、Stable Diffusion)的优劣势;
-
你会跑通一整套图像变现路径:头像/IP定制、插画图集、商业封面、商品展示图、P图与修图;
-
你还将掌握如何制作作品集、定价、找客户,把图像技能真正转化为收入。
不论你是内容创作者、电商运营者、设计师,还是毫无绘图基础的普通人,只要你想通过图像表达观点、打造视觉产品或提供插图服务,这一系列文章都将是你最值得深入掌握的变现模块之一。
目录
文生图不是画图,是控制生成
文生图(Text-to-Image)是AI绘图的核心模式,意思是“用文字生成图像”。你不需要画笔、也不需要美术基础,只要描述得足够清晰准确,AI就能根据你的提示词,生成风格统一、构图合理的视觉画面。
但这不是“输入几个词,等着出奇迹”,而是一种语言控制生成的能力。理解提示词的逻辑,就能提升图像的质量、可控性和变现价值。
概念解释
在传统的理解中,“画图”意味着画家用画笔在纸上勾勒轮廓、上色、添加光影细节。这个过程讲究技巧、观察力和时间积累。但AI绘图并不是在模拟人类作画的动作,而是通过对文字的理解和图像的生成模型,直接在像素层面“构建图像”。
AI绘图背后的核心技术叫"文生图"(text-to-image generation),它是一种跨模态生成能力。简单来说:你给AI一句话,它不画草图、不构图,而是基于这句话直接生成一张图像。
想象一下你和一个只会看词汇不懂语义的画师交流:
-
你说“a dragon flying over a snowy mountain at sunset”,
-
它会立刻从自己庞大的视觉记忆库中,抓取“dragon”、“snowy mountain”、“sunset”的相关视觉碎片,组合、融合,最终输出一个符合你描述的画面,见图4-1。
这不是模板拼图,也不是图库调图,而是:
-
每一次生成,都是重新演算的原创图像。
-
没有参考图也能生成,只靠词语引导结果。
再举个比喻:AI绘图更像“翻译”而不是“画图”。你说的文字,被翻译成一个抽象空间中的“图像向量”,再投影成真实可视的画面。
图像生成过程中的核心技术是扩散模型(Diffusion)和语义对齐(CLIP),见图4-2。
Diffusion 像是在随机噪声中“逐步清晰地还原图像”,从一团像素雾气里,把形状和结构渐渐描出来;
CLIP 则负责理解提示词和画面之间的关系,确保“dragon”不会被生成成“马”,“sunset”真的出现暖橘色的光。
所以你可以理解为:AI在进行“语义翻译” → “图像构建” → “像素解码”这一整套流程。它不是在“调用素材”,而是在你每次提示下,从零“构思并输出”一张原创图。
这也意味着:AI绘图生成的每一张图,都是一次性的、不可复刻的“临场创作”。只要你换一个词、调整顺序、加点修饰,它的出图结果就会完全不同。
当然,我们不需要搞懂这些底层原理,只要知道:AI不是在画图,而是在“构建”图像。它懂你说的每个词在视觉世界中的含义,它的“理解”是基于无数图像+文字的学习过程。
实例讲解
下面我们用一个具体的实例来拆解一下从提示词到图像的过程。选用的Prompt 示例为
a futuristic city floating in the sky, sunset, cinematic lighting, ultra wide angle(漂浮在天空中的未来主义城市, 日落, 电影般的灯光, 超广角)
这个Prompt就像一串多维度的“图像指令”,从多个方面指引AI构建出一幅完整的视觉场景,具体拆解如下,如图4-3。
-
城市要未来感(futuristic city):让AI选择高科技建筑风格,如悬浮楼宇、全息光影、飞行交通等视觉元素。
-
要浮空(floating):明确城市的“位置”在天空中,不是地面。
-
要有日落光影(sunset, cinematic lighting):确定画面的色调为暖色系、逆光构图,具有电影质感。
-
视角要广阔(ultra wide angle):画面布局偏横向延展,强调空间的深度和辽阔感。
这段Prompt不仅设定了画面要素,还同时控制了构图方式和氛围营造,相当于一份高度浓缩的“画面剧本”。AI会在庞大的图像训练库中调取所有与这些关键词相关的视觉向量,并加以组合,最终"生出一张图"。
我们还可以继续细化这个Prompt,增加更多的细节,如图4-4。
a futuristic city floating in the sky, sunset, cinematic lighting, ultra wide angle, golden hour, sharp details, flying cars, glass towers, clouds under the city(漂浮在天空中的未来城市、日落、电影灯光、超广角、黄金时段、清晰的细节、飞行汽车、玻璃塔、城市下的云层)
通过添加“golden hour(金色时刻)”、“flying cars(飞行汽车)”、“glass towers(玻璃塔楼)”、“clouds under the city(城市下方的云层)”等词汇,画面细节会更加丰富,生成结果也更接近你脑海中的想象图。
理解这个基本逻辑后,接下来要掌握的就是:如何用提示词更清楚地控制画面。这就是5.1.2将要展开的内容。
提示词是图像语言,组合词汇 = 控制画面
Prompt(提示词)是一种“图像语言”,也是你与AI沟通的唯一方式。想让AI理解你想要什么画面,就要学会用提示词准确表达。这不仅仅是“堆砌形容词”,而是一种有结构、有逻辑的组合表达方式。
提示词的关键模块
提示词可以分成几个关键模块:
-
主体描述(是什么)
-
行为或动作(做什么)
-
场景与环境(在哪里)
-
风格与审美(画面质感)
-
构图与镜头语言(怎么看)
-
细节与技术参数(清晰度、材质、光影等)
在这里我们用一个完整的例子来为大家拆解一段提示词的关键模块。
a cute white cat sitting on the moon, night sky background, cartoon style, soft lighting, 4K, centered composition, magical atmosphere(一只可爱的白猫坐在月亮上,夜空背景,卡通风格,柔和的灯光,4K,居中构图,魔幻的氛围)
这句Prompt拆解如下:
-
主体:一只可爱的白猫(a cute white cat)
-
行为+场景:坐在月亮上 + 背景夜空(sitting on the moon, night sky background)
-
风格:卡通风格(cartoon style)
-
光影与材质:柔光(soft lighting),高清(4K)
-
构图与氛围:居中构图、魔法氛围(centered composition, magical atmosphere)
这样的组合,能够大幅提升AI对你意图的理解力,也让生成图像更稳定、风格更统一。
常见问题1:为什么提示词“组合”比“关键词”更重要?
很多新手会误以为:“我只要把想要的几个关键词写进去,AI就能自动理解我要的画面。”但实际上,这种“关键词堆叠”的写法,反而是AI绘图新手最容易踩的坑。
AI虽然能识别单词含义,但它并不具备真正的人类语义推理能力。如果你只是把几个相关词摆在一起,它就很可能用“拼图式”的逻辑生图,结果往往是:构图混乱、主次不分、关系错乱,甚至生成了畸形画面。
示例 1:关键词堆叠写法
a dog, grass, sky, sunset(狗, 草, 天空, 日落)
这只是简单罗列了图像中你想要的元素,但没有说明谁是主体、它在做什么、画面关系如何。AI可能会输出:
-
狗浮在空中
-
草丛压过狗的身体
-
主体位置偏离视觉中心
换句话说,这种写法的画面非常容易“跑偏”。
示例 2:结构化描述写法
a golden retriever running on green grass under a sunset sky, cinematic view, warm light, dynamic motion(一只金毛猎犬在夕阳西下绿草地上奔跑,电影般的景色,温暖的灯光,动感的运动)
这句话虽然更长,但层次清晰,包含了:
-
主体:a golden retriever
-
行为:running
-
场景:on green grass under a sunset sky
-
氛围:cinematic view, warm light
-
动态性:dynamic motion
这样的结构不仅告诉AI“画面中有谁”,还告诉它“这些东西之间是怎样排列的”,以及“整体画面的情绪和色调是什么”。生成出来的图像也会更加稳定、自然、视觉关系清晰。
类比来说,关键词堆叠像是在说“有狗、有草、有天、有夕阳”,而结构化描述是说:“有一只金毛狗,在夕阳下的草地上奔跑”,后者才是AI能够“按图施工”的语言方式,如图4-5。
总的来说,写Prompt不要只想“我想要什么元素”,而是要表达“这些元素之间的关系”和“整张图的氛围”。你越是像在写一段简短场景描述,AI越容易还原出你脑海中的画面。
常见问题2:提示词顺序影响结果吗?
是的,提示词的顺序会显著影响AI生成图像时对画面主次结构的理解与还原,AI通常是从左至右依次处理提示词的,因此:
-
主体描述应放在最前,以确保画面聚焦正确对象;
-
风格和氛围提示词紧随其后,用于设定画面的基调;
-
构图、光影、清晰度等细节信息建议放在末尾,用于增强视觉效果。
这个顺序可以看作是“图像生成的施工图纸”,你给出的词越有条理,AI的画面组织就越清晰自然。我们通过两个示例对比来看看,提示词顺序不同成图效果的差异。
示例 A(顺序合理,构图清晰)
a samurai standing on a cliff during sunset, cinematic lighting, dramatic atmosphere, ultra detailed, 4k(日落时分,武士站在悬崖上,电影般的灯光,戏剧性的氛围,超精细,4k)
-
主体(samurai)明确
-
动作/场景/时间按语义逻辑组织
-
画面氛围完整,细节自然堆叠
示例 B(顺序混乱,画面跑偏)
4k, ultra detailed, cinematic lighting, sunset, a samurai on a cliff(4K,超细节,电影级照明,日落,悬崖上的武士)
-
技术参数优先,导致AI优先渲染“效果”而非“主题”
-
人物可能不突出,光效可能压过主体
我们一起来看看两个提示词的成图对比,如图4-6,图 A 画面完整统一,主次清晰,图 B 主体弱化,构图混乱,甚至可能出现“看起来像壁纸但主题缺失”的问题。
这里也为大家准备了7个提示词写作技巧:从初级到进阶。
-
英文比中文更精准:虽然现在很多模型支持中文,但核心训练语言依然是英文,提示词用英文表达更稳定、更清晰。中文可以作为参考补充,但建议主要使用英文描述主体、风格、动作等核心元素。
-
反向提示词(Negative Prompt)提高画面干净度:如果不希望生成多余物体、畸形结构或模糊背景,可以加上一些反向提示词,如:
disfigured, low quality, blurry, extra limbs, deformed hands(毁容, 画质低下, 模糊, 四肢多余, 手部变形)
。 -
风格叠加更具视觉张力:可以把多个风格词叠加组合,形成“混搭风”,比如:
watercolor + ink sketch
、cyberpunk + anime style
、claymation + 3D rendering
,这种方式能打破AI默认风格的局限,生成具有独特质感的视觉作品。 -
角色设定帮助塑造人物性格与场景关系:
a confident female scientist, standing in a futuristic lab, sharp lighting, photorealistic(一个自信的女科学家,站在未来主义的实验室里,光线清晰,照片般逼真)
,这句提示词说明了人物身份(scientist)、情绪(confident)、场景(lab)、风格(photorealistic)和光效,有助于AI生成“有个性”的人物图像。 -
动作类提示词增强画面动感:不止使用“walking”或“standing”,可以丰富到:
jumping, flying, pointing, looking back, holding an umbrella, sitting on edge, dancing in rain(跳跃、飞行、指指点点、回头看、撑伞、坐在边缘、在雨中跳舞)
。这些词能让画面产生“动作感”和“情绪张力” -
背景词细化有助于空间构建:背景不是只有“天空”和“森林”,可以更细致地设定场景,比如
"in a neon-lit alley(在霓虹闪烁的小巷里)"
、"on a floating island above the clouds(在云层之上的浮岛上)"
和"in a classroom with chalkboard and sunlight(在有黑板和阳光的教室里)"
背景词能帮助AI建立“空间逻辑”,让画面更真实自然。 -
加入情绪氛围词:强化整体气质,比如:
dramatic, mysterious, cozy, romantic, nostalgic, surreal, whimsical, dark fantasy(戏剧性, 神秘, 惬意, 浪漫, 怀旧, 超现实, 异想天开, 黑暗幻想)
,氛围词是决定画面“调性”的关键,甚至可以不加任何主体,仅用氛围词+构图+光影提示,生成情绪类插画。
总的来说,提示词顺序决定了AI“先关注谁”,提示词内容决定了“最终生成什么”。从结构、语言、顺序、细节四个层面发力,你就能逐步掌握提示词写作的精确性与创造力。
如何控制风格、细节与一致性
很多初学者会疑惑:“我怎么控制AI画得更像我想要的风格?”答案是:风格、构图和细节都可以用提示词来引导。这些提示词不是孤立存在的,它们共同构建出一个完整的视觉语境,让AI“理解”你想要画面的审美倾向与呈现方式。提示词就像是“画面的剧本语言”,通过精确的词汇组合,我们可以明确设定画面的气质、结构和质感。
风格提示词:决定整体视觉风格与艺术语言
风格提示词影响的是整张图的“气质”和“表现手法”。它决定AI在生成图像时采用哪种美学风格——是手绘风?油画风?像素风?未来感?东方古典?这些都会影响颜色搭配、笔触质感、光影结构等视觉细节。
-
对比示例,相同的提示词使用不同风格生图的对比示例,见图4-7。
a cat on the moon, pixel art style(像素风格)
vs.
a cat on the moon, watercolor painting style(水彩画风格)
第一张通常是8-bit像素风格,强调块状颜色、低分辨率;而第二张则是柔和、晕染、具有水彩画质感的画面。虽然主题相同,但两种提示词“风格滤镜”的不同,会直接让AI走向两条完全不同的视觉路径。
这种风格控制能力,尤其适用于以下三种情况。
-
品牌风格统一输出:让不同图像在视觉语言上保持一致,提升品牌识别度
-
插画风角色开发:根据角色设定快速匹配合适的画风,如儿童插画、漫画、卡通风
-
复古或潮流文化融合:通过风格提示词还原某种时代氛围或潮流审美,例如“蒸汽波 + 霓虹色 + 像素风”融合视觉
-
风格对比
这里也为大家准备了一些常用风格的提示词,并用这些风格做了一组图像风格对比,见表4-1。
表4-1 图像常用风格
风格类别 | 示例关键词(英文) | 中文说明 |
插画风格 | flat design, line art, vector | 扁平设计、线稿风格、矢量插画(适合清晰视觉内容,如UI设计、讲解图) |
手绘风格 | watercolor, ink sketch, colored pencil | 水彩画、墨线稿、彩铅风格(模拟传统画法,有人情味和笔触感) |
写实风格 | realistic, cinematic, photorealistic | 写实风格、电影感、照片级真实(强调光影与细节) |
艺术风格 | ukiyo-e, oil painting, impressionism | 浮世绘、油画、印象派(对应具体美术流派,有复古或艺术气质) |
潮流风格 | cyberpunk, vaporwave, synthwave | 赛博朋克、蒸汽波、新合成波(强烈视觉冲击,适合视觉品牌或故事场景) |
通过视觉并列可以清晰看出,风格提示词不仅决定了画面的“风”,还决定了整体“感”,见图4-8。
-
构图提示词:决定主次关系与观看视角
构图提示词影响的是画面元素的分布、透视关系、主体突出程度,是决定一张图“是否有视觉重点”的核心。通过构图词,我们可以告诉AI“从哪个角度看”、“把谁放在画面中心”、“画面是广角还是特写”,进而塑造画面的视觉张力和叙事重心。
这里为大家准备了一个构图对比示例:同样是一只青蛙,构图完全不同,见图4-9及表4-2。
表4-2 不同构图提示词对比
Prompt 示例 | 构图组合 | 效果说明 |
A:a frog in a forest, top view, centered composition(森林里的一只青蛙,顶视图,居中构图) | top view + centered | 鸟瞰视角,突出整体环境;青蛙居中构图,画面稳定对称,适合用于场景说明 |
B:a frog in a forest, close-up, rule of thirds(森林中的青蛙,特写,三分法) | close-up + rule of thirds | 青蛙面部特写,三分构图让画面更具动势感;主体突出,背景虚化增强聚焦感 |
这种差异不仅体现在画面“好不好看”,而是在画面叙述中“谁是主角”。构图词就是告诉AI“你要把谁放在观众最先注意的地方”。
这里也为大家整理了一个常用构图类词汇表,见表4-3。
表4-3 常用构图类词汇表
构图提示词(英文) | 中文解释 | 应用说明 |
close-up | 特写 | 主体占据大部分画面,强调细节与情绪 |
top view | 俯视 | 从上往下看,适合表现场景结构或整体环境 |
centered composition | 中心构图 | 主体位于画面正中,强调稳定、对称 |
rule of thirds | 三分法构图 | 将主体安排在三分线交点处,更具美感和动势 |
wide shot | 广角全景 | 展示更大场景背景,适合表现空间感、氛围感 |
low angle view | 仰拍角度 | 从下往上看,强化主体的力量感或震撼感 |
为了帮助你更灵活地组合构图关键词,我们总结了以下实用建议
-
如果你希望主体非常突出,建议使用:"close-up" + "rule of thirds"
-
如果你希望构图平稳、对称,建议使用:"centered composition"
-
想要拉远视角、交代环境,加入:"wide shot" 或 "top view"
-
想表现气势、压迫感,可尝试:"low angle view"
组合构图提示词时,也要注意与整体风格和主题的协调,例如“close-up + cinematic lighting”更适合角色肖像,而“top view + volumetric light”则更适合场景概念图。
在这里作者也用“一只兔子在草地上 ”来对上面的构图提示词作一下对比见图4-10。
通过不同构图提示词展现的图片视觉内容,读者可以直观看到构图角度与主体定位对画面信息传达的影响。构图不是可选项,而是每一张图“视觉叙事”的底层逻辑。掌握构图提示词,就掌握了AI画图里的“镜头语言”。
细节提示词:决定画面质感、光影与摄影效果
AI可以模拟多种“镜头语言”和材质语言,通过细节类提示词,你能掌控画面的清晰度、焦点、光源方向、甚至材质纹理。细节提示词的加入,常常是决定画面“有没有质感”“像不像专业摄影作品”的关键因素。
你可以把这些提示词理解为“摄影棚参数”:
-
灯光类型(柔光?逆光?体积光?)
-
镜头焦段(特写?虚化背景?微距?)
-
颗粒与纹理(胶片感?高清写实?)
这些都不是画面主体,但却直接决定画面的专业度与美感。
为了帮助你更直观地理解细节提示词的效果差异,下面我们通过一个简单示例来进行对比说明:
a glass of orange juice on a table, soft lighting, macro lens, ultra detailed(一杯橙汁在桌子上,柔和的灯光,微距镜头,超高清晰度)
vs.
a glass of orange juice on a table(一杯橙汁在桌子上)
第一张将呈现水珠、光晕、玻璃反光、果肉纹理等精致视觉效果,光影柔和、聚焦清晰,宛如产品摄影图;第二张可能是平铺直叙、扁平无光的基础画面,见图4-11。
为了便于理解和参考,我们将常见的细节提示词整理如下表4-4。
表4-4 常见的细节提示词整理
英文提示词 | 中文解释 | 功能说明 |
soft lighting | 柔光 | 提升画面柔和度,适合人像、静物、插画氛围画 |
bokeh background | 背景虚化 | 让背景模糊,突出主体,制造摄影景深效果 |
high contrast | 高对比 | 强化明暗反差,提升画面视觉冲击力 |
ultra detailed | 极致细节 | 呈现高清纹理,适合特写与产品渲染 |
macro lens | 微距镜头 | 强调细节放大,常用于食物、特写、生物图像 |
film grain | 胶片颗粒感 | 增添复古颗粒质感,模拟胶片摄影效果 |
volumetric lighting | 体积光 | 增加立体光束感,常用于氛围图或魔幻场景 |
如果想要更高效地使用这些细节提示词,下面是一些实用技巧可供参考:
-
通常将这些词加在提示词后段,用来“增强”视觉效果,而不是定义主体内容。
-
多个细节词可以叠加,形成协同效果,例如:“ultra detailed + soft lighting + volumetric lighting”可以形成既清晰又有空间感的画面。
这里也有一些扩展建议,你也可以尝试用细节词模拟不同媒介质感:
-
加入“film grain + retro tone”模拟老胶片
-
使用“watercolor texture + ink splatter”模拟传统手绘
-
使用“sharp focus + transparent lighting”模拟产品渲染
总的来说,风格决定气质,构图决定重点,细节决定质感。三个维度构成了Prompt的视觉表现力。如果你想生成更像“专业作品”的画面,必须开始有意识地在这三个维度上搭建你的提示词体系。