线性代数的本质第三章——矩阵与线性变换

很遗憾,矩阵是什么是说不清的。你必须得自己亲眼看看 ——墨菲斯
Unfortunately, no one can be told what the Matrix is. You have to see it yourself -Morpheus

线性变换

  • <变换> 本质上是 <函数> 的一种花哨的说法,它接受输入内容,并输出对应结果。线性代数情况下,我们考虑的是接收一个向量并且输出一个向量的变换。
  • <线性> 1.直线在变换后仍然保持为直线,不能有所弯曲。2.原点必须保持固定。
  • 一句话总结来说是:线性变换是“保持网格线平行且等距分布”的变换

矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
矩阵向量乘法就是计算线性变换作用于给定向量的一种途径
一旦今后你看到了矩阵,你便可以将其解释为空间的一种特定的转换,理解了这一点,线性代数的一切都好理解了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值