线性代数的本质第八章——基变换

数学是一门赋予不同事物相同名称的艺术 ——昂利·庞加莱
Mathematics is the art of givinh the same name to different things. -Henri Poincare

在这里插入图片描述
将另一种基向量转化为我们的常见的基向量描述:
将她的语言描述转化为我们的语言描述
在这里插入图片描述
如何转化一个矩阵:
在这里插入图片描述
(在它的坐标旋转90°的结果)

  • 左乘基变换矩阵(矩阵的列代表的是用我们的语言描述詹妮弗语言的基向量):需要被转换的詹妮弗的语言➜ 使用我们的语言描述来描述同一个向量

  • 左乘线性变换矩阵(表示的变化为:左旋转90°):➜变换的后的向量(还是以我们的语言来描述)

  • 左乘基变换矩阵的逆:➜变换后的向量(用詹妮弗的语言来描述)
    这三个矩阵合起来就是用詹妮弗语言描述的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值