香橙派 AIpro上手体验并验证车道线识别算法

香橙派 AIpro上手体验并验证车道线识别算法

1.前言

最近入手了一块香橙派AIpro,体验了一下,感觉还不错,在这里分享给大家,大家可以做个参考。

2.开箱

img

整套产品包含一块主板、一个电源插头和一条双端Type-C的数据线,打开盒子可以看到主板,主板前后都有海绵保护,包装得还可以:

img

主板上已经装好了散热器,焊好了天线,这里注意下上电时天线上的导电胶带不要和板子接触,以免造成板子元器件短路:

img

主板侧面有一个Typc-C供电口,两个HDMI显示输出口,中间有个音频接口,再右边是一个Type-C接口,这个Type-C接口只支持USB3.0的设备,也就是说USB2.0和1.0的鼠标或键盘等设备是不能接到这个这个接口的,鼠标和键盘要用右边的两个USB接口。但这个Type-C接口可以接USB3.0的移动硬盘之类设备。最右边还有一个千兆以太网口。

img

板子另一侧有一排40pin的GPIO,两个Key,一个是关机键,一个是重启键。还有两个LED指示灯,靠近关机键的那个LED是电源指示灯,接上电源就亮,左边那个LED可以用程序控制,默认是Linux内核跑起来之后会点亮,系统关闭后熄灭。

img

40pin GPIO的定义如下,包含一路SPI、一路IIC、三路UART和一路PWM输出,其余引脚已经默认配置为GPIO模式,可以直接使用,有复用功能的引脚需要修改 DTS 配置才能作为GPIO使用。

img

下图是主机背面的样子,来的时候带了一张32G内存卡,此外还可以看到两个拨码开关,可以用来选择启动方式,支持SSD、EMMC和SD三种启动方式。

img

其他的还有MIPI摄像头等接口,这里就不一一列举了,需要的话可以再使用手册中查找相关说明。

3.开机

插上电源后自动开机,注意显示器要插到HDMI0接口,也就是靠近USB的那个,目前只有HDMI0支持显示系统桌面。出厂默认安装Ubuntu系统,支持Xface桌面,这默认用户名是HwHiAiUser,默认密码是Mind@123:

img

登录之后,先试一下联网,有线网直接插上就可以自动识别连接,WIFI也可以正常连接,ping一下看是否能正常联网:

img

4.系统自带算法模型

出产时预装的系统中,自带了几个常见的算法模型样例,

<think>好的,我现在需要在香橙AI Pro设备上配置人脸识别系统,但是用户需要教程或指南。首先,我需要回忆一下之前提供的引用内容,看看有没有相关的信息。引用[1]提到目标检测例程可以用于智能门禁系统,通过识别人脸图片判断是否是住户,这说明官方例程里可能已经包含相关的人脸识别示例。引用[2]则介绍了开发板的硬件配置和AI功能,比如使用YOLOv5进行图片识别,以及昇腾AI处理器的计算能力。 接下来,我需要考虑用户的需求是具体的配置步骤或教程。根据引用内容,用户可能需要参考官方例程,或者基于现有的AI功能进行开发。可能的步骤包括:安装系统环境、获取例程代码、安装依赖库、配置摄像头、训练模型或使用预训练模型、编写推理代码等。同时,用户可能需要使用昇腾处理器的相关工具,如CANN或MindSpore框架。 需要注意的是,用户可能不熟悉具体的开发流程,所以步骤要详细。另外,引用中提到例程对于初学AI的用户很有帮助,所以教程需要尽量简化,避免过于复杂的技术术语。可能需要指导用户如何找到官方提供的例程,如何运行它们。此外,硬件连接如摄像头配置也可能需要说明。 可能的问题包括环境配置中的依赖项安装,如何处理摄像头的数据输入,以及如何优化模型在开发板上的性能。此外,用户可能需要知道如何调整参数以适应不同的场景,比如光照条件或不同的人脸数据库。 最后,根据引用中的信息,鼓励用户参与讨论和扩展应用,所以在回答中可以建议用户参考官方文档或社区支持,保持更新。同时,可以生成相关问题,帮助用户深入理解人脸识别在Orange Pi AI Pro上的应用。</think>在香橙AI Pro上配置人脸识别系统可参考以下步骤,结合官方例程与昇腾AI处理器特性实现: ### 一、环境准备 1. **系统烧录** 根据[引用2]描述,需先完成系统录入。从官网下载Ubuntu或Orange Pi定制镜像,使用BalenaEtcher工具烧录至MicroSD卡。 2. **安装昇腾工具链** 开发板依赖华为CANN(Compute Architecture for Neural Networks)工具包。执行: ```bash wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/8.0.RC1/ubuntu-aarch64/Ascend-cann-toolkit_8.0.RC1.alpha003_linux-aarch64.run sudo ./Ascend-cann-toolkit_8.0.RC1.alpha003_linux-aarch64.run --install ``` ### 二、获取人脸识别例程 1. **下载官方示例** 官方例程库包含基础人脸检测代码[^1],通过Git克隆: ```bash git clone https://github.com/orangepi-xunlong/orangepi_AIpro_examples.git cd orangepi_AIpro_examples/Face_Recognition ``` 2. **安装Python依赖** 需安装OpenCV、MindSpore等库: ```bash pip install opencv-python-headless mindspore-lite ``` ### 三、硬件配置 1. **连接摄像头** 使用USB摄像头或MIPI-CSI接口摄像头,执行`ls /dev/video*`检测设备是否识别。 2. **配置视频输入** 修改代码中视频源路径: ```python cap = cv2.VideoCapture(0) # USB摄像头使用0,MIPI摄像头可能需改为/dev/video1 ``` ### 四、模型部署 1. **使用预训练模型** 昇腾模型库提供优化后的ArcFace或Facenet模型,下载后放置于`models/`目录: ```python from mindspore import load_checkpoint model = load_checkpoint('models/arcface.ckpt') ``` 2. **实时推理代码示例** ```python import cv2 from face_detector import FaceDetector detector = FaceDetector() while True: ret, frame = cap.read() faces = detector.detect(frame) for (x,y,w,h) in faces: cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 2) cv2.imshow('Face Recognition', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break ``` ### 五、性能优化 - **启用NPU加速**:在代码中添加`context.set_context(device_target='Ascend')`[^2] - **模型量化**:使用`convert_fp32_to_int8.sh`脚本将FP32模型转为INT8,提升推理速度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老孟的孟不是很老的孟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值