obsidian+ollama 搭建本地大预言模型

Ollma 作为开源模型仓库真的有很多用法,最近看到也可以结合 obsdian 使用,还是很香的。

前期准备

Ollama

Ollama https://ollama.ai
Ollama GitHub 仓库 ollama/ollama: Get up and running with Llama 2, Mistral, Gemma, and other large language models. (github.com)

选择 windows 预览版傻瓜式安装不多赘述,是很好的开源模型库,可以通过 GitHub 查看如何使用,为了方便学习,我摘录如下:

目前已入驻模型

ollama.com/library

ModelParametersSizeDownload
Llama 27B3.8GBollama run llama2
Mistral7B4.1GBollama run mistral
Dolphin Phi2.7B1.6GBollama run dolphin-phi
Phi-22.7B1.7GBollama run phi
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
Llama 2 13B13B7.3GBollama run llama2:13b
Llama 2 70B70B39GBollama run llama2:70b
Orca Mini3B1.9GBollama run orca-mini
Vicuna7B3.8GBollama run vicuna
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
注意下载根据自己的内存来决定,推荐普通电脑用 qwen 1.8 b

查询已安装的模型

ollama list

运行模型 windows 直接运行软件即可默认开机启动

ollama serve

Obsidian

安装插件 copilot 直接点击安装即可
image.png

插件设置
Default Model :OLLAMA
Embedding Model : ollama
Ollama Model 这个根据你下载的开源模型来决定,要本地快速响应的话,用 qwen 1.8 b 即可。其他太慢了。
Ollama base url :默认即可,如果你改了,那就用改了的,可以在浏览器试一下,是否正在运行。
1712125347843.jpg
1712125361831.jpg

1712125385362.jpg
image.png

环境变量设置

在插件中有提示,需要添加环境变量。
image.png
OLLAMA_ORIGINS=app://obsidian.md ollama serve*

image.png

使用方法

以上完成设置后,即可直接使用。
对话方式

  1. 直接对话

image.png

  1. 用文件对话,其实是内置了 Prompt 组合,会默认英文回答。

image.png
image.png
而且也能看到通义千问 1.8 b 版本在处理长文本上能力比较弱,回答会有很多重复内容。

总结

如今大模型泛滥的情况下,本地大开源大模型的优势是个人隐私及配合个人知识库搭建自己的模型,用 obsidian 这款插件的用途不是很大,接下来还是要深入学习如何用 streamlit 结合本地知识库搭建大预言模型。

如果对你有所启发记得点赞。
参考:Obsidian - 本地AI助手 - 哔哩哔哩 (bilibili.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细节处有神明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值