机器学习——支持向量机(SVM)

前言:参考《机器学习》,对偶问题没看懂。。。。(我只是一个代码的搬运工。。。)机器学习专栏

  1. 机器学习——线性回归(预测)
  2. 机器学习——逻辑回归(分类)
  3. 机器学习——特征缩放
  4. 机器学习——正则化
  5. 机器学习——支持向量机(SVM)

支持向量机(SVM)

1、基本原理

现给定数据集$D={((x^{(1)},y^{(i)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)}))},y^{(i)}\in\{-1,1 \}$,我们现在的目的就是找一个超平面将这两个类别的样本点分开。
在样本空间中,划分超平面可以由线性方程表示为:wTx+b=0w^Tx+b=0wTx+b=0
则样本点x(i)x^{(i)}x(i)到超平面(w,x)(w,x)(w,x)的距离为:r=∣wTx(i)+b∣∣∣w∣∣r=\frac{|w^Tx^{(i)}+b|}{||w||}r=wwTx(i)+b
其中,∣∣w∣∣||w||w表示范数,这是空间的一个性质,一般指欧式范数。到原点距离的意思,超平面可以理解为平面中的直线、空间中的平面的推广到更高维度,但是作用都是划分。

一个超平面(w,x)(w,x)(w,x)可以将它所在的空间分为两半, 它的法向量指向的那一半对应的一面是它的正面, 另一面则是它的反面,假设超平面(w,x)(w,x)(w,x)能够将训练样本正确分类,即:{wTx(i)+b>0,y(i)=+1wTx(i)+b<0,y(i)=−1 \left\{\begin{matrix} w^Tx^{(i)}+b>0,&&y^{(i)}=+1\\ w^Tx^{(i)}+b<0,&&y^{(i)}=-1 \end{matrix}\right. {wTx(i)+b>0wTx(i)+b<0,y(i)=+1y(i)=1
支持向量机要求满足:{wTx(i)+b⩾+1,y(i)=+1wTx(i)+b⩽−1,y(i)=−1 \left\{\begin{matrix} w^Tx^{(i)}+b\geqslant+1,&&y^{(i)}=+1\\ w^Tx^{(i)}+b\leqslant -1,&&y^{(i)}=-1 \end{matrix}\right. {wTx(i)+b+1wTx(i)+b1,y(i)=+1y(i)=1
距离超平面最近的样本点使上式等号成立,它们被称为“支持向量”(support vector),两个异类支持向量到超平面的距离之和:γ=2∣∣w∣∣ \gamma =\frac{2}{||w||} γ=w2
被称为“间隔”(margin)在这里插入图片描述
欲使分类效果更好,我们就要找到具有“最大间隔”的划分超平面,即:maxw,b2∣∣w∣∣s.t.y(i)(wTx(i)+b)⩾1,i=1,2,...,m \mathop{max}\limits_{w,b} \quad \frac{2}{||w||} \\ s.t. \quad y^{(i)}(w^Tx^{(i)}+b)\geqslant1,\quad i=1,2,...,m w,bmaxw2s.t.y(i)(wTx(i)+b)1,i=1,2,...,m
最大化2∣∣w∣∣\frac{2}{||w||}w2等价于最小化∣∣w∣∣22\frac{||w||^2}{2}2w2,,即:minw,b∣∣w∣∣22s.t.y(i)(wTx(i)+b)⩾1,i=1,2,...,m \mathop{min}\limits_{w,b} \quad \frac{||w||^2}{2} \\ s.t. \quad y^{(i)}(w^Tx^{(i)}+b)\geqslant1,\quad i=1,2,...,m w,bmin2w2s.t.y(i)(wTx(i)+b)1,i=1,2,...,m
这就是SVM模型,是一个QP问题。(对偶问题以后再看吧,看不懂。)

2、软间隔

在处理现实问题的时候,我们其实很难找到一个能刚好划分的超平面,就算找到了,我们也不能确定这个结果不是由于过拟合导致。所以我们要放宽条件,即允许一些样本不满足约束条件,我们称为“软间隔”。在这里插入图片描述
但是,我们在最大化间隔的时候,应使不满足约束条件的样本点尽可能少,即:minw,b∣∣w∣∣22+C∑i=1ml0/1(y(i)(wTx(i)+b)−1) \mathop{min}\limits_{w,b} \quad \frac{||w||^2}{2}+C\sum_{i=1}^{m}l_{0/1}(y^{(i)}(w^Tx^{(i)}+b)-1) w,bmin2w2+Ci=1ml0/1(y(i)(wTx(i)+b)1)
其中,C>0C>0C>0取有限值常数,l0/1l_{0/1}l0/1是“0/1”损失函数l0/1(z)={1,ifz<00.otherwise l_{0/1}(z)=\left\{\begin{matrix} 1,&& if\quad z<0\\ 0.&& otherwise \end{matrix}\right. l0/1(z)={1,0.ifz<0otherwise
但是,l0/1l_{0/1}l0/1非凸、非连续,数学性质不好,常用“替代损失”(surrogate loss)函数代替:

  1. hinge损失:lhinge(z)=max(0,1−z)l_{hinge}(z)=max(0,1-z)lhinge(z)=max(0,1z)
  2. 指数损失(exponential loss):lexp(z)=exp(−z)l_{exp}(z)=exp(-z)lexp(z)=exp(z)
  3. 对率损失(logistic loss):llog(z)=log(1+exp(−z))l_{log}(z)=log(1+exp(-z))llog(z)=log(1+exp(z))

若采用hinge损失,则模型表示为:minw,b∣∣w∣∣22+C∑i=1mmax(0,1−y(i)(wTx(i)+b)) \mathop{min}\limits_{w,b} \quad \frac{||w||^2}{2}+C\sum_{i=1}^{m}max(0,1-y^{(i)}(w^Tx^{(i)}+b)) w,bmin2w2+Ci=1mmax(0,1y(i)(wTx(i)+b))
引入“松弛变量ξi⩾0\xi_i\geqslant0ξi0,可得“软间隔支持向量机”,但是要求在这个软间隔区域的样本点尽可能少,即:minw,b∣∣w∣∣22+C∑i=1mξis.t.y(i)(wTx(i)+b)⩾1−ξi,i=1,2,...,m \mathop{min}\limits_{w,b} \quad \frac{||w||^2}{2}+C\sum_{i=1}^{m}\xi_i \\ s.t. \quad y^{(i)}(w^Tx^{(i)}+b)\geqslant1-\xi_i,\quad i=1,2,...,m w,bmin2w2+Ci=1mξis.t.y(i)(wTx(i)+b)1ξi,i=1,2,...,m

3、核函数

前面说的是线性可分的情况,那要是出现线性不可分怎么办?比如:在这里插入图片描述
对于这样的问题,我们需要将样本从原始空间映射到一个更高维的特征空间,使得样本在这个特征空间线性可分。比如:现在有样本点如下,很明显我们用x2x^2x2二次项去拟合更好,这其实就是一个维度提升,核函数就是实现这样的作用的。在这里插入图片描述
ϕ(x)\phi(x)ϕ(x)表示将xxx映射后的特征向量,于是在新的特征空间的超平面表示为:f(x)=wTϕ(x)+b f(x)=w^T\phi(x)+b f(x)=wTϕ(x)+b
此时,SVM模型表示为:minw,b∣∣w∣∣22s.t.y(i)(wTϕ(x)+b)⩾1,i=1,2,...,m \mathop{min}\limits_{w,b} \quad \frac{||w||^2}{2} \\ s.t. \quad y^{(i)}(w^T\phi(x)+b)\geqslant1,\quad i=1,2,...,m w,bmin2w2s.t.y(i)(wTϕ(x)+b)1,i=1,2,...,m
(这里等我以后再慢慢弄懂)

4、sklearn实现SVM

# -*- coding:utf-8 -*-
"""
@author: 1
@file: SVM.py
@time: 2019/11/25 23:58
"""

from sklearn import svm
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

df = pd.read_csv(r'D:\workspace\python\machine learning\data\breast_cancer.csv',header=None)
X = df.iloc[:, 1:10]      # 属性
y = df.iloc[:, 30]       # 分类结果
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
clf = svm.SVC(gamma='scale')
'''SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
 decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)'''
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print('accuracy_score:', accuracy_score(y_test, y_pred))

5、SVM多分类

4.1多分类原理

1、一对多法(one-versus-rest,简称1-v-r SVMs)。训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。(这个与逻辑回归的多分类原理相同)

2、一对一法(one-versus-one,简称1-v-1 SVMs)。其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就需要设计k(k-1)/2个SVM。当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。Libsvm中的多类分类就是根据这个方法实现的。

3、层次支持向量机(H-SVMs)。层次分类法首先将所有类别分成两个子类,再将子类进一步划分成两个次级子类,如此循环,直到得到一个单独的类别为止。

4.2sklearn实现SVM多分类

# -*- coding:utf-8 -*-
"""
@author: 1
@file: SVM_mc.py
@time: 2019/11/26 20:34
"""


from sklearn import svm
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

df = pd.read_csv(r'D:\workspace\python\machine learning\data\iris.csv')
X = df.iloc[:, 0:3]
Y = df.iloc[:, 4]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
clf = svm.SVC(gamma='scale', decision_function_shape='ovr')    # 一对多法
# clf = svm.SVC(gamma='scale', decision_function_shape='ovo')  一对一法
clf.fit(x_train, y_train)
'''LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,
 intercept_scaling=1, loss='squared_hinge', max_iter=1000,
 multi_class='ovr', penalty='l2', random_state=None, tol=0.0001,
 verbose=0)'''
y_pred = clf.predict(x_test)
print('accuracy_score:', accuracy_score(y_test, y_pred))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tao_RY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值