参数估计

摘 自 随 机 过 程 \color{#F00}{摘自随机过程}
\qquad 参数是母体分布的未知参数,例如正态母体分布的分布 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2) μ , σ 2 \mu,\sigma^{2} μ,σ2未知, μ \mu μ σ 2 \sigma^{2} σ2是参数。

估计量的衡量标准

无偏性

\qquad 若参数 θ \theta θ的估计量 θ ^ \hat{\theta} θ^满足
E θ ^ = θ E\hat{\theta}=\theta Eθ^=θ \qquad 则称 θ ^ \hat{\theta} θ^ θ \theta θ的无偏估计量。如果 E θ ^ ≠ θ E\hat{\theta}\neq\theta Eθ^̸=θ,那么 E θ ^ − θ E\hat{\theta}-\theta Eθ^θ称为估计量的 θ ^ \hat{\theta} θ^的偏差。若
lim ⁡ n → ∞ E θ ^ = θ \lim_{n \to \infty}E\hat{\theta}=\theta nlimEθ^=θ \qquad 则称 θ ^ \hat{\theta} θ^ θ \theta θ的渐进无偏估计量。

相合估计量

\qquad 估计量 θ ^ \hat{\theta} θ^依赖于子样容量 n n n,需要考虑 n → ∞ n\to\infty n θ ^ \hat{\theta} θ^的极限性态,它是否依概率收敛到未知参数 θ \theta θ。若当 n → ∞ n\to\infty n θ ^ \hat{\theta} θ^依概率收敛到 θ \theta θ,即对于任意 ε > 0 \varepsilon>0 ε>0,有
lim ⁡ n → ∞ P { ∣ θ ^ − θ ∣ &lt; ε } = 1 \lim_{n\to\infty}P\{|\hat{\theta}-\theta|&lt;\varepsilon\}=1 nlimP{θ^θ<ε}=1则称 θ ^ \hat{\theta} θ^ θ \theta θ的相合估计量或一致估计量。
\qquad θ ^ \hat{\theta} θ^是未知参数 θ \theta θ的无偏估计量,对 θ \theta θ的平均平方误差(即方差)为
D θ ^ = E ( θ ^ − θ ) 2 D\hat{\theta}=E(\hat{\theta}-\theta)^{2} Dθ^=E(θ^θ)2方差 D θ ^ D\hat{\theta} Dθ^越小,估计量 θ ^ \hat{\theta} θ^愈好。由罗-克拉美下界讨论估计量方差的下界。

点估计

\qquad 一般来说,设母体 X X X的分布函数是 F ( x ; θ 1 , θ 2 , . . . , θ k ) F(x;\theta_{1},\theta_{2},...,\theta_{k}) F(x;θ1,θ2,...,θk),其中 θ 1 , θ 2 , . . . , θ k \theta_{1},\theta_{2},...,\theta_{k} θ1,θ2,...,θk是位置参数。如果从母体中取得的子样值为 x 1 , x 2 , . . . , x n x_{1},x_{2},...,x_{n} x1,x2,...,xn,作 k k k个函数 θ ^ i = θ ^ i ( x 1 , x 2 , . . . , x n ) , i = 1 , 2 , . . . , k \hat{\theta}_{i}=\hat{\theta}_{i}(x_{1},x_{2},...,x_{n}),i=1,2,...,k θ^i=θ^i(x1,x2,...,xn),i=1,2,...,k分别用 θ ^ i \hat{\theta}_{i} θ^i估计位置参数 θ i \theta_{i} θi,则称 θ ^ i \hat{\theta}_{i} θ^i θ i \theta_{i} θi的估计值。
\qquad 如果从母体中取得的子样为随机矢量 X 1 , X 2 , . . . , X n X_{1},X_{2},...,X_{n} X1,X2,...,Xn,作 θ ^ i = θ ^ i ( X 1 , X 2 , . . . , X n ) , i = 1 , 2 , . . . , k \hat{\theta}_{i}=\hat{\theta}_{i}(X_{1},X_{2},...,X_{n}),i=1,2,...,k θ^i=θ^i(X1,X2,...,Xn),i=1,2,...,k,则称 θ ^ i \hat{\theta}_{i} θ^i(随机变量)是 θ i \theta_{i} θi的估计量。这种用 θ ^ i \hat{\theta}_{i} θ^i对参数 θ i \theta_{i} θi做定值估计,称为参数的点估计。估计值随抽得子样的数值不同而不同,带有随机性。

点估计的求法

\qquad 矩法 母体分布中的位置参数和它的矩是一致的。对母体分布的未知参数做估计,首先对母体的矩做估计,用自然的作法是用子样矩分别估计母体相应的矩。
\qquad 最大似然估计
\qquad 用子样中位数和极差估计正态母体的参数 设正态母体的分布是 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)。子样中位数 m e me me的渐进分布如下:设 X 1 , X 2 , . . . , X n X_{1},X_{2},...,X_{n} X1,X2,...,Xn是独立同分布随机变量,且每一随机变量服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)。若 m e me me X 1 , X 2 , . . . , X n X_{1},X_{2},...,X_{n} X1,X2,...,Xn的中位数,则对任意的 x x x,有
l i m n → ∞ P { 2 n π ( m e − μ ) ≤ x } = 1 2 π ∫ − ∞ x e − t 2 2 d t \mathop{lim}\limits_{n \to \infty}P\{\sqrt{\frac{2n}{\pi}}(me-\mu)\leq x\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^{2}}{2}}dt nlimP{π2n (meμ)x}=2π 1xe2t2dt n n n很大时, 2 n π ( m e − μ ) \sqrt{\frac{2n}{\pi}}(me-\mu) π2n (meμ)近似服从标准正态分布,因而 m e me me服从正态分布 N ( μ , π 2 n ) N(\mu,\frac{\pi}{2n}) N(μ,2nπ) n n n愈大, m e me me μ \mu μ附近的概率愈大。所以, n n n很大时可取
μ ^ = m e \hat{\mu}=me μ^=me \qquad 对于正态母体,子样极差 R R R的数学期望和方差分别为
E R = d n σ , D R = v n 2 σ 2 ER=d_{n}\sigma,DR=v^{2}_{n}\sigma^{2} ER=dnσ,DR=vn2σ2 \qquad 表明 1 d n R \frac{1}{d_{n}}R dn1R的数学期望等于 σ \sigma σ,故可用 1 d n \frac{1}{d_{n}} dn1估计 σ \sigma σ,即
σ ^ = 1 d n R \hat{\sigma}=\frac{1}{d_{n}}R σ^=dn1R d n d_{n} dn查表法可得。

区间估计

\qquad 区间估计则要由子样给出参数值的一个估计范围,因此参数的区间估计就是由子样给出参数的估计范围,并使未知参数在其中具有指定的概率。
\qquad 记母体分布为 N ( μ , σ 0 2 ) N(\mu,\sigma_{0}^{2}) N(μ,σ02),考察子样 X 1 , X 2 , . . . , X n X_{1},X_{2},...,X_{n} X1,X2,...,Xn,可用子样估计平均 X ˉ \bar{X} Xˉ估计 μ \mu μ X ˉ \bar{X} Xˉ服从正态分布 N ( μ , σ 0 2 n ) N(\mu,\frac{\sigma_{0}^{2}}{n}) N(μ,nσ02),因而
U = X ˉ − μ σ 0 n U=\frac{\bar{X}-\mu}{\frac{\sigma_{0}}{\sqrt{n}}} U=n σ0Xˉμ服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),给定概率 1 − α ( 0 &lt; α &lt; 1 ) 1-\alpha(0&lt;\alpha&lt;1) 1α(0<α<1),存在 u α 2 u_{\frac{\alpha}{2}} u2α使
P { ∣ U ∣ &lt; u α 2 } = 1 − α P\{|U|&lt;u_{\frac{\alpha}{2}}\}=1-\alpha P{U<u2α}=1α改写为
P { X ˉ − u α 2 σ 0 n &lt; μ &lt; X ˉ + u α 2 σ 0 n } = 1 − α P\{\bar{X}-u_{\frac{\alpha}{2}}\frac{\sigma_{0}}{\sqrt{n}}&lt;\mu&lt;\bar{X}+u_{\frac{\alpha}{2}}\frac{\sigma_{0}}{\sqrt{n}}\}=1-\alpha P{Xˉu2αn σ0<μ<Xˉ+u2αn σ0}=1α其中 ( X ˉ − u α 2 σ 0 n &lt; μ &lt; X ˉ + u α 2 σ 0 n ) (\bar{X}-u_{\frac{\alpha}{2}}\frac{\sigma_{0}}{\sqrt{n}}&lt;\mu&lt;\bar{X}+u_{\frac{\alpha}{2}}\frac{\sigma_{0}}{\sqrt{n}}) (Xˉu2αn σ0<μ<Xˉ+u2αn σ0) μ \mu μ的置信区间,分别为置信下限和置信上限。 1 − α 1-\alpha 1α称为置信概率,通常取 1 − α 1-\alpha 1α得数值为95%,或90%,或99%。置信概率表示未知参数落在置信区间的可靠程度。
\qquad 直观上看,抽取一定容量的子样,要估计可靠程度越高,估计得范围越大。当 α \alpha α一定时,如果 n n n愈大,置信区间愈短,取样愈大,估计愈精准
\qquad 导出置信区间的方法:先求出位置参数 μ \mu μ的估计量 X ˉ \bar{X} Xˉ,由未知参数 μ \mu μ和估计量 X ˉ \bar{X} Xˉ作出函数 U U U,它的分布是已知的,且与未知参数 μ \mu μ无关,然后根据给定的置信概率与函数 U U U的分布导出置信区间。给定不同的 σ \sigma σ数值如标准差 S S S或子样标准差 S ∗ S^{*} S对应不同的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值