数值分析_第四章_数值积分与数值微分

\qquad 实际问题当中常常计算积分,有些数值方法如微分方程和积分方程的求解,也都和积分计算相联系。使用牛顿-莱布尼兹( N e w t o n − L e i b n i z Newton-Leibniz NewtonLeibniz)公式求解往往比较困难,有时原函数不能用初等函数表示或者求解过程十分困难,因此有必要研究积分的数值计算问题
\qquad 由积分中值定理,在积分区间 [ a , b ] [a,b] [a,b]中存在一点 ξ \xi ξ使得
∫ b a f ( x ) d x = ( b − a ) f ( ξ ) \int_{b}^{a}f(x)dx=(b-a)f(\xi) baf(x)dx=(ba)f(ξ) \qquad 但点 ξ \xi ξ的具体位置一般难以确定,称 f ( ξ ) f(\xi) f(ξ)为区间 [ a , b ] [a,b] [a,b]上的平均高度,只要对平均高度 f ( ξ ) f(\xi) f(ξ)提出一种算法,相应的获得一种数值积分方法
\qquad 如果将两端的高度 f ( a ) 、 f ( b ) f(a)、f(b) f(a)f(b)的算术平均值作为平均高度 f ( ξ ) f(\xi) f(ξ)的近似值,则求积公式为 ∫ a b f ( x ) d x ≈ b − a 2 [ f ( a ) + f ( b ) ] \int_{a}^{b}f(x)dx\approx\frac{b-a}{2}[f(a)+f(b)] abf(x)dx2ba[f(a)+f(b)]称为梯形公式(n=1)。若使用区间中间点 c = a + b 2 c=\frac{a+b}{2} c=2a+b作为 ξ \xi ξ,则可得公式为
∫ a b f ( x ) d x ≈ ( b − a ) f ( a + b 2 ) \int_{a}^{b}f(x)dx\approx(b-a)f(\frac{a+b}{2}) abf(x)dx(ba)f(2a+b)称为中矩形公式或矩形公式
\qquad 设将积分区间 [ a , b ] [a,b] [a,b]划分为 n n n等份,步长 h = b − a n h=\frac{b-a}{n} h=nba,选去等距节点 x k = a + k h x_{k}=a+kh xk=a+kh构造的插值型求积公式为 ! ! ! \color{#F00}{!!!} !!!
I n = ( b − a ) ∑ k = 0 n C k ( n ) f ( x k ) I_{n}=(b-a)\sum_{k=0}^{n}C_{k}^{(n)}f(x_{k}) In=(ba)k=0nCk(n)f(xk)称为牛顿-柯特斯(Newton-Cotes)公式,式中 C k ( n ) C_{k}^{(n)} Ck(n)称为柯特斯系数,引进变换 x = a + t h x=a+th x=a+th,则有
C k ( n ) = ( − 1 ) n − k n k ! ( n − k ) ! ∫ 0 n ∏ j = 0 j ≠ k n ( t − j ) d t C_{k}^{(n)}=\frac{(-1)^{n-k}}{nk!(n-k)!}\int_{0}^{n}\mathop{\mathop{\prod}\limits_{j=0}}\limits_{j\neq k}^{n}(t-j)dt Ck(n)=nk!(nk)!(1)nk0nj̸=kj=0n(tj)dt \qquad 辛普森(Simpson)公式(n=2)
I n = ( b − a ) [ 1 6 f ( a ) + 4 6 f ( a + b 2 ) + 1 6 f ( b ) ] I_{n}=(b-a)[\frac{1}{6}f(a)+\frac{4}{6}f(\frac{a+b}{2})+\frac{1}{6}f(b)] In=(ba)[61f(a)+64f(2a+b)+61f(b)]代数精确度为3,余项表示为
R [ f ] = K f ( 4 ) ( η ) ,   η ∈ ( a , b ) R[f]=Kf^{(4)}(\eta),\ \eta\in(a,b) R[f]=Kf(4)(η), η(a,b) \qquad 更一般的,在区间 [ a , b ] [a,b] [a,b]上适当选取某些节点 x k x_{k} xk,然后用 f ( x k ) f(x_{k}) f(xk)的加权平均的到平均高度的 f ( ξ ) f(\xi) f(ξ)的近似值,构造的求积公式如下
∫ a b f ( x ) d x ≈ ∑ k = 0 n A k f ( x k ) \int_{a}^{b}f(x)dx\approx\sum_{k=0}^{n}A_{k}f(x_{k}) abf(x)dxk=0nAkf(xk)式中 x k x_{k} xk称为求积节点, A k A_{k} Ak称为求积系数,亦称为伴随节点 x k x_{k} xk的权。 A k A_{k} Ak仅与节点 x k x_{k} xk的选择有关,不依赖于被积函数 f ( s ) f(s) f(s)的具体形式
\qquad 代数精度 定义1 ! ! ! \color{#F00}{!!!} !!!如果某个求积公式对于次数不超过 m m m的多项式均能准确的成立,但对于 m + 1 m+1 m+1次多项式就不准确成立,则称该求积公式具有 m m m次代数精度。欲使求积公式具有 m m m次代数精度,只要令其对 f ( x ) = 1 , x , ⋯   , x m f(x)=1,x,\cdots,x^{m} f(x)=1,x,,xm都能准确成立,即
{ ∑ A k = b − a ∑ A k x k = 1 2 ( b 2 − a 2 ) , ⋮ ∑ A k x k m = 1 m + 1 ( b m + 1 − a m + 1 ) \begin{cases} \sum A_{k}=b-a\\ \sum A_{k}x_{k}=\frac{1}{2}(b^{2}-a^{2}),\\ \vdots \\ \sum A_{k}x_{k}^{m}=\frac{1}{m+1}(b^{m+1}-a^{m+1}) \end{cases} Ak=baAkxk=21(b2a2),Akxkm=m+11(bm+1am+1) \qquad 求积公式的收敛性与稳定性 定义2在求积公式中,若
l i m n → ∞ h → 0 ∑ k = 0 n A k f ( x k ) − ∫ a b f ( x ) d x \mathop{\mathop{lim}\limits_{n\to\infty}}\limits_{h\to 0}\sum_{k=0}^{n}A_{k}f(x_{k})-\int_{a}^{b}f(x)dx h0nlimk=0nAkf(xk)abf(x)dx其中 h = m a x 1 ≤ i ≤ n { x i − x i − 1 } h=\mathop{max}\limits_{1\leq i\leq n}\{x_{i}-x_{i-1}\} h=1inmax{xixi1}则称求积公式收敛。在求积公式中,由于计算 f ( x k ) f(x_{k}) f(xk)可能产生误差 δ k \delta_{k} δk实际的得到的为 f k ~ \tilde{f_{k}} fk~,即 f ( x k ) = f k ~ + δ k f(x_{k})=\tilde{f_{k}}+\delta_{k} f(xk)=fk~+δk,记
I n ( f ) = ∑ k = 0 n A k f ( x k ) I n ( f ~ ) = ∑ k = 0 n A k f k ~ I_{n}(f)=\sum_{k=0}^{n}A_{k}f(x_{k})\quad I_{n}(\tilde{f})=\sum_{k=0}^{n}A_{k}\tilde{f_{k}} In(f)=k=0nAkf(xk)In(f~)=k=0nAkfk~如果对任给小正数 ε > 0 \varepsilon>0 ε>0,只要误差 ∣ δ k ∣ |\delta_{k}| δk充分小就有,
∣ I n ( f ) − I n ( f ~ ) ∣ = ∣ ∑ k = 0 n A k [ f ( x k ) − f k ~ ] ∣ ≤ ε |I_{n}(f)-I_{n}(\tilde{f})|=|\sum_{k=0}^{n}A_{k}[f(x_{k})-\tilde{f_{k}}]|\leq\varepsilon In(f)In(f~)=k=0nAk[f(xk)fk~]ε 表 明 求 积 公 式 计 算 是 稳 定 的 \color{#F00}{表明求积公式计算是稳定的}
\qquad 定义3 对任意给定的 ε > 0 \varepsilon>0 ε>0,若 ∃ δ > 0 \exists\delta>0 δ>0,只要 ∣ f ( x k ) − f k ~ ∣ ≤ δ ( k = 0 , 1 , ⋯   , n ) |f(x_{k})-\tilde{f_{k}}|\leq\delta(k=0,1,\cdots,n) f(xk)fk~δ(k=0,1,,n)就有上式成立,则称求积公式是稳定的。
\qquad 求积公式的余项 若求积公式的代数精度为 m m m,则由求积公式余项的表达式可将余项表达为
R [ f ] = ∫ a b f ( x ) d x − ∑ k = 0 n A k f ( x k ) = K f ( m + 1 ) ( η ) R[f]=\int_{a}^{b}f(x)dx-\sum_{k=0}^{n}A_{k}f(x_{k})=Kf^{(m+1)}(\eta) R[f]=abf(x)dxk=0nAkf(xk)=Kf(m+1)(η) \qquad K K K为不依赖 f ( x ) f(x) f(x)的待定参数, η ∈ ( a , b ) \eta\in(a,b) η(a,b)。结果表明当 f ( x ) f(x) f(x)是次数小于等于 m m m的多项式时,由于 f ( m + 1 ) ( x ) = 0 f^{(m+1)}(x)=0 f(m+1)(x)=0,故此时 R [ f ] = 0 R[f]=0 R[f]=0即求积公式精确成立。当 f ( x ) = x m + 1 f(x)=x^{m+1} f(x)=xm+1时, f ( m + 1 ) ( x ) = ( m + 1 ) ! f^{(m+1)}(x)=(m+1)! f(m+1)(x)=(m+1)!,又 R n ( f ) ≠ 0 R_{n}(f)\neq 0 Rn(f)̸=0,可求得
K = 1 ( m + 1 ) ! [ ∫ a b x m + 1 d x − ∑ k = 0 n A k x k m + 1 ] = 1 ( m + 1 ) ! [ 1 m + 2 ( b m + 2 − a m + 2 ) − ∑ k = 0 n A k x k m + 1 ] K=\frac{1}{(m+1)!}[\int_{a}^{b}x^{m+1}dx-\sum_{k=0}^{n}A_{k}x_{k}^{m+1}]\\ =\frac{1}{(m+1)!}[\frac{1}{m+2}(b^{m+2}-a^{m+2})-\sum_{k=0}^{n}A_{k}x_{k}^{m+1}] K=(m+1)!1[abxm+1dxk=0nAkxkm+1]=(m+1)!1[m+21(bm+2am+2)k=0nAkxkm+1]带入余项可以的到具体的余项表达式。梯形公式和中矩形公式的代数精度为1,其余项表达式为
R [ f ] = K f ′ ′ ( η ) R[f]=Kf^{''}(\eta) R[f]=Kf(η)

复合求积公式

\qquad 为了提高精度通常将积分区域分成若干子区间(通常等分),在每个子区间上用低阶求积公式,称为复合求积法
\qquad 复合梯形公式 将区间 [ a , b ] [a,b] [a,b]分为 n n n等份,分点 x k = a + k h , h = b − a n , k = 0 , 1 , ⋯   , n x_{k}=a+kh,h=\frac{b-a}{n},k=0,1,\cdots,n xk=a+kh,h=nba,k=0,1,,n在每个子区间上 [ x k , x k + 1 ] ( k = 0 , 1 , ⋯   , n − 1 ) [x_{k},x_{k+1}](k=0,1,\cdots,n-1) [xk,xk+1](k=0,1,,n1)上采用梯形公式则得
I = ∫ a b f ( x ) d x = ∑ k = 0 n − 1 ∫ x k x k + 1 f ( x ) d x = h 2 ∑ k = 0 n − 1 [ f ( x k + f ( x k + 1 ) ) ] + R n ( f ) I=\int_{a}^{b}f(x)dx=\sum_{k=0}^{n-1}\int_{x_{k}}^{x_{k+1}}f(x)dx=\frac{h}{2}\sum_{k=0}^{n-1}[f(x_{k}+f(x_{k+1}))]+R_{n}(f) I=abf(x)dx=k=0n1xkxk+1f(x)dx=2hk=0n1[f(xk+f(xk+1))]+Rn(f)
T n = h 2 ∑ k = 0 n − 1 [ f ( x k + f ( x k + 1 ) ) ] T_{n}=\frac{h}{2}\sum_{k=0}^{n-1}[f(x_{k}+f(x_{k+1}))] Tn=2hk=0n1[f(xk+f(xk+1))]称为复合梯形公式。其余项表示为
R n ( f ) = I − T n = ∑ k = 0 n − 1 [ − h 3 12 f ′ ′ ( η k ) ] ,   η k ∈ ( x k , x k + 1 ) R_{n}(f)=I-T_{n}=\sum_{k=0}^{n-1}[-\frac{h^{3}}{12}f^{''}(\eta_{k})],\ \eta_{k}\in(x_{k},x_{k+1}) Rn(f)=ITn=k=0n1[12h3f(ηk)], ηk(xk,xk+1)复合辛普森求积公式与此相似,子区间上展开方式变为辛普森公式。
\qquad 定理 f ( x ) ∈ C ∞   [ a , b ] f(x)\in C^{\infty}\ [a,b] f(x)C [a,b],则有
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_{1}h^{2}+\alpha_{2}h^{4}+\cdots+\alpha_{l}h^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+其中系数 α l ( l = 1 , 2 , ⋯   ) \alpha_{l}(l=1,2,\cdots) αl(l=1,2,) h h h无关(由泰勒展开可得)。只要真值与近似值得误差能表示为 h h h的幂级数,都能使用外推算法(将步长变为 1 2 h \frac{1}{2}h 21h),提高精度。外推算法可写为统一形式(龙贝格算法):
T m ( h ) = 4 m 4 m − 1 T m − 1 ( h 2 ) − 1 4 m − 1 T m − 1 ( h ) T_{m}(h)=\frac{4^{m}}{4^{m}-1}T_{m-1}(\frac{h}{2})-\frac{1}{4^{m}-1}T_{m-1}(h) Tm(h)=4m14mTm1(2h)4m11Tm1(h)

自适应积分方法

\qquad 在复合求积过程中,当被积函数变化剧烈时,使用较小步长,当被积函数变化平缓时,使用较大步长。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值