YOLO11新发布,本篇将详细介绍如何用自制的数据集来训练YOLO11模型。
1 数据集制作
数据集的制作跟YOLO系列是完全一样的,使用Labelme进行标注,会生成 .json文件。
YOLO接受的标签数据是包含id和归一化后坐标的 .txt文件,所以自己写一个 .json转 .txt的python 脚本。以下程序首先将没有标签的数据删除,将剩余的图片和标签保存到新的一个文件夹内(/selec_data);然后将.json标签转为.txt标签;最后随机划分为训练集和验证集保存在两个子文件夹内(/train_data/train和/train_data/val)
import os
import glob
import cv2
import json
import numpy as np
import random
import shutil
## Labelme保存的图片和标签的文件夹:
in_dir = './custom_data/data/'
## 按匹配对整理,去除没有标签的图片
img_pths = glob.glob(in_dir + "/*.bmp") # 自制数据的图片后缀
for img_pth in img_pths:
json_pth = img_pth.replace(".bmp", ".json")
print(json_pth)
if os.path.exists(json_pth):
shutil.copy(img_pth, img_pth.replace('/data', '/select_data'))
shutil.copy(json_pth, json_pth.replace('/data', '/select_data'))
## 将labelme_json标注转_txt
def convert(size, box):
"""
convert [xmin, xmax, ymin, ymax] to [x_centre, y_centre, w, h]
"""
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
class_names = ["pupil", 'iris'] #数组元素替换为自己数据的类别
out_dir = "./custom_data/select_data/"
txt_dir = "./custom_data/select_data/"
os.makedirs(txt_dir, exist_ok=True)
json_pths = glob.glob(out_dir + "/*.json")
for json_pth in json_pths:
f1 = open(json_pth, "r")
json_data = json.load(f1)
img_pth = os.path.join(json_pth.replace("json", "bmp"))
img = cv2.imread(img_pth)
h, w = img.shape[:2]
tag = os.path.basename(json_pth)
out_file = open(os.path.join(txt_dir, tag.replace("json", "txt")), "w")
# print(json_data)
label_infos = json_data["shapes"]
for label_info in label_infos:
label = label_info["label"]
points = label_info["points"]
print("+++", len(points))
if len(points) >= 3:
points = np.array(points)
print(points.shape)
xmin, xmax = max(0, min(np.unique(points[:, 0]))), min(w, max(np.unique(points[:, 0])))
ymin, ymax = max(0, min(np.unique(points[:, 1]))), min(h, max(np.unique(points[:, 1])))
print("++++", ymin, ymax)
elif len(points) == 2:
x1, y1 = points[0]
x2, y2 = points[1]
xmin, xmax = min(x1, x2), max(x1, x2)
ymin, ymax = min(y1, y2), max(y1, y2)
else:
continue
bbox = [xmin, xmax, ymin, ymax]
bbox_ = convert((w,h), bbox)
cls_id = class_names.index(label)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bbox_]) + '\n')
def mymovefile(srcfile, dstpath): # 移动函数
if not os.path.isfile(srcfile):
print ("%s not exist!"%(srcfile))
else:
fpath,fname=os.path.split(srcfile) # 分离文件名和路径
if not os.path.exists(dstpath):
os.makedirs(dstpath) # 创建路径
shutil.move(srcfile, dstpath + fname) # 移动文件
print ("move %s -> %s"%(srcfile, dstpath + fname))
# 划分训练集和验证集
out_dir10 = "./custom_data/train_data/train/images"
out_dir11= "./custom_data/train_data/train/labels"
out_dir20 = "./custom_data/train_data/val/images"
out_dir21 = "./custom_data/train_data/val/labels"
os.makedirs(out_dir10, exist_ok=True)
os.makedirs(out_dir11, exist_ok=True)
os.makedirs(out_dir20, exist_ok=True)
os.makedirs(out_dir21, exist_ok=True)
txt_dir = "./custom_data/select_data/"
img_dir = "./custom_data/select_data/"
txt_names = glob.glob(txt_dir+'*.txt')
l = len(txt_names)
sel_names = random.sample(txt_names, int(l*0.8)) #0.90
# print(sel_names)
for txt_name in txt_names:
img_name = txt_name.replace('txt', 'bmp')
if txt_name in sel_names:
print("---", txt_name)
shutil.copy(txt_name, txt_name.replace('/select_data', '/train_data/train/labels')) # 复制文件
shutil.copy(img_name, img_name.replace('/select_data', '/train_data/train/images'))
else:
shutil.copy(txt_name, txt_name.replace('/select_data', '/train_data/val/labels')) # 复制文件
shutil.copy(img_name, img_name.replace('/select_data', '/train_data/val/images'))
这时候,数据集文件夹的文件结构如下:
-- custom_data
-- select_data
-- train_data
-- train
-- images
img1.bmp
...
-- labels
img1.txt
...
-- val
-- images
-- labels
2 准备训练
训练环境
Python >=3.8
PyTorch >= 1.8
再安装其他必须的库即可
在ultralytics官方仓库下载YOLO11源码,下载后打开整个工程,在根目录下新建文件夹,命名为datasets,把刚刚准备好的数据集复制到./datasets
文件夹下。
如上面图片所示,在./ultraltics/cfg/datasets/
下新建一个custom_data.yaml
文件,打开文件复制以下代码:
# my custom dataset
path: custom_data/train_data
train: # train images (relative to 'path')
- train
val: # val images (relative to 'path')
- val
# number of classes
nc: 2
# class names
names: ["pupil", "iris"]
path
处填写./datasets
文件夹下的数据路径,分别有train
和val
两个子文件夹;类别数量和类别名称按自己的填写,这里的名称要按照你标注时的id顺序填写,否则后面验证和预测的时候会出现混乱。
3 开始训练
如上图所示,在文件夹根目录下新建python文件./train.py
:
from ultralytics import YOLO
if __name__ =='__main__':
# 模型大小从小到大有n, s, m, l, x,需要哪一个就改11后面的字母
model = YOLO('ultralytics/cfg/models/v8/yolo11n.yaml')
# 这里的data必须设置为我们刚才创建的.yaml文件
model.train(data = 'ultralytics/cfg/datasets/custom_data.yaml',
epochs = 200,
batch = 32,
imgsz = 640,
device = 0, # 如果是CPU训练就写'cpu',否则表示GPU的编号
workers = 0 # 这里推荐workers就写0,否则可能占用C盘空间和虚拟内存,导致出现页面文件太小的报错
)
metrics = model.val()
因为我们下载了ultralytics的源码,所以不用安装ultralytics库就可以直接from ultralytics import YOLO
。
运行train.py
即可开始训练。
训模型文件都保存在./runs/detect/train/weights/
,这里还能看到验证结果的图片。注意一下:文件夹./runs/detect/train
名称会每运行一次就累加一次,train2、train3…
4 测试
在文件夹根目录下新建python文件./test.py
:
from ultralytics import YOLO
if __name__ =='__main__':
# 读取模型权重,在刚才说的run文件夹里
model = YOLO('runs/detect/train/weights/best.pt')
# 预测,路径是待预测图片的路径,我放在了训练数据的datasets文件夹里
results = model("datasets/test_data/tImg1.bmp")
results[0].show()
直接显示预测结果图
整个过程跟YOLOv8的过程是一模一样的,ultralytics也直接在YOLOv8仓库中更新了YOLO11,所以没有遇到什么新的bug。
有任何问题欢迎在评论区里询问,我每天都会看。