湍动能k输运方程的推导

一、雷诺应力输运方程

雷诺应力输运方程的推导可以参考博主的另一篇博文《雷诺方程、脉动运动方程及雷诺应力输运方程的推导》。为方便查看,现将雷诺应力输运方程给出: ∂ < u i ′ u j ′ > ∂ t + < u k > ∂ < u i ′ u j ′ > ∂ x k = − < u i ′ u k ′ > ∂ < u j > ∂ x k − < u j ′ u k ′ > ∂ < u i > ∂ x k + < p ′ ρ ( ∂ u j ′ ∂ x i + ∂ u i ′ ∂ x j ) > − ∂ ∂ x k ( < p ′ u i ′ > ρ δ j k + < p ′ u j ′ > ρ δ i k + < u i ′ u j ′ u k ′ > − ν ∂ < u i ′ u j ′ > ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u j ′ ∂ x k > \begin{aligned} &\frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k} = -\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} + \left<\frac{p'}{\rho}\left(\frac{\partial u_j'}{\partial x_i}+\frac{\partial u_i'}{\partial x_j}\right)\right>\\& -\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_i'\right>}{\rho}\delta_{jk}+ \frac{\left<p'u_j'\right>}{\rho}\delta_{ik}+ \left<u_i'u_j'u_k'\right>- \nu\frac{\partial \left<u_i'u_j'\right>}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right> \end{aligned} tuiuj+ukxkuiuj=uiukxkujujukxkui+ρp(xiuj+xjui)xk(ρpuiδjk+ρpujδik+uiujukνxkuiuj)2νxkuixkuj

二、湍动能输运方程

湍动能输运方程可以雷诺应力输运方程推出,将雷诺应力输运方程作张量收缩运算,即将式中的下标 j j j i i i替换,得: ∂ < u i ′ u i ′ > ∂ t + < u k > ∂ < u i ′ u i ′ > ∂ x k = − < u i ′ u k ′ > ∂ < u i > ∂ x k − < u i ′ u k ′ > ∂ < u i > ∂ x k + < p ′ ρ ( ∂ u i ′ ∂ x i + ∂ u i ′ ∂ x i ) > − ∂ ∂ x k ( < p ′ u i ′ > ρ δ i k + < p ′ u i ′ > ρ δ i k + < u i ′ u i ′ u k ′ > − ν ∂ < u i ′ u i ′ > ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} &\frac{\partial\left<u_i'u_i'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_i'\right>}{\partial x_k} = -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} + \left<\frac{p'}{\rho}\left(\frac{\partial u_i'}{\partial x_i}+\frac{\partial u_i'}{\partial x_i}\right)\right>\\& -\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_i'\right>}{\rho}\delta_{ik}+ \frac{\left<p'u_i'\right>}{\rho}\delta_{ik}+ \left<u_i'u_i'u_k'\right>- \nu\frac{\partial \left<u_i'u_i'\right>}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned} tuiui+ukxkuiui=uiukxkuiuiukxkui+ρp(xiui+xiui)xk(ρpuiδik+ρpuiδik+uiuiukνxkuiui)2νxkuixkui由于 ∂ u i ′ ∂ x i = 0 \frac{\partial u_i'}{\partial x_i}=0 xiui=0 δ i k = { 1 , i = k 0 , i ≠ k \delta_{ik}=\left \{ \begin{matrix} 1 ,i=k\\ 0,i\ne k \end{matrix}\right. δik={1,i=k0,i=k故由上式得 ∂ < u i ′ u i ′ > ∂ t + < u k > ∂ < u i ′ u i ′ > ∂ x k = − 2 < u i ′ u k ′ > ∂ < u i > ∂ x k − ∂ ∂ x k ( 2 < p ′ u k ′ > ρ + < u i ′ u i ′ u k ′ > − ν ∂ < u i ′ u i ′ > ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} &\frac{\partial\left<u_i'u_i'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_i'\right>}{\partial x_k} = -2\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} \\& -\frac{\partial}{\partial x_k} \left( \frac{2\left<p'u_k'\right>}{\rho}+ \left<u_i'u_i'u_k'\right>- \nu\frac{\partial \left<u_i'u_i'\right>}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned} tuiui+ukxkuiui=2uiukxkuixk(ρ2puk+uiuiukνxkuiui)2νxkuixkui湍动能 k = 1 2 < u i ′ u i ′ > = 1 2 ( < u ′ 2 > + < v ′ 2 > + < w ′ 2 > ) k=\frac{1}{2}\left<u'_iu_i'\right>= \frac{1}{2} \left( \left<u'^2\right> +\left<v'^2\right> +\left<w'^2\right> \right) k=21uiui=21(u2+v2+w2)以及: k ′ = 1 2 u i ′ u i ′ = 1 2 ( u ′ 2 + v ′ 2 + w ′ 2 ) k'=\frac{1}{2}u'_iu_i'= \frac{1}{2} \left( u'^2 +v'^2 +w'^2 \right) k=21uiui=21(u2+v2+w2)代入上式得: ∂ ( 2 k ) ∂ t + < u k > ∂ ( 2 k ) ∂ x k = − 2 < u i ′ u k ′ > ∂ < u i > ∂ x k − ∂ ∂ x k ( 2 < p ′ u k ′ > ρ + 2 < k ′ u k ′ > − ν ∂ ( 2 k ) ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} &\frac{\partial (2k)}{\partial t}+ \left<u_k\right>\frac{\partial(2k)}{\partial x_k} = -2\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} \\& -\frac{\partial}{\partial x_k} \left( \frac{2\left<p'u_k'\right>}{\rho}+ 2\left<k'u_k'\right>- \nu\frac{\partial (2k)}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned} t(2k)+ukxk(2k)=2uiukxkuixk(ρ2puk+2kukνxk(2k))2νxkuixkui两边除以 2 2 2湍动能输运方程 ∂ k ∂ t + < u k > ∂ k ∂ x k = − < u i ′ u k ′ > ∂ < u i > ∂ x k − ∂ ∂ x k ( < p ′ u k ′ > ρ + < k ′ u k ′ > − ν ∂ k ∂ x k ) − ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > (1) \begin{aligned} &\frac{\partial k}{\partial t}+ \left<u_k\right>\frac{\partial k}{\partial x_k} = -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_k'\right>}{\rho}+ \left<k'u_k'\right>- \nu\frac{\partial k}{\partial x_k} \right) -\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned}\tag{1} tk+ukxkk=uiukxkuixk(ρpuk+kukνxkk)νxkuixkui(1)

三、湍动能输运方程另一种形式

在介绍湍动能输运方程的另一种形式之前,首先介绍应变率张量的分解: s i j ( t ) = S i j + s i j ′ s_{ij}(t)=S_{ij}+s'_{ij} sij(t)=Sij+sij其中 S i j S_{ij} Sij可以表示成时间平均的形式 S i j = [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] . S_{ij}=\begin{bmatrix} \frac{\partial U}{\partial x} & \frac{1}{2}\left(\frac{\partial U}{\partial y}+\frac{\partial V}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial U}{\partial z}+\frac{\partial W}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial U}{\partial y}+\frac{\partial V}{\partial x}\right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left(\frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial U}{\partial z}+\frac{\partial W}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right)& \frac{\partial W}{\partial z} \end{bmatrix}. Sij=xU21(yU+xV)21(zU+xW)21(yU+xV)yV21(zV+yW)21(zU+xW)21(zV+yW)zW. s i j ′ = [ ∂ u ′ ∂ x 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) ∂ v ′ ∂ y 1 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ y ) ∂ w ′ ∂ z ] . s'_{ij}=\begin{bmatrix} \frac{\partial u'}{\partial x} & \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right )& \frac{\partial v'}{\partial y} & \frac{1}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial y} \right)& \frac{\partial w'}{\partial z} \end{bmatrix}. sij=xu21(yu+xv)21(zu+xw)21(yu+xv)yv21(zu+yw)21(zu+xw)21(zv+yw)zw.另外 S i j S_{ij} Sij还可以表示成系综平均的形式,即 S i j = [ ∂ < u > ∂ x 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) ∂ < v > ∂ y 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) ∂ < w > ∂ z ] . S_{ij}=\begin{bmatrix} \frac{\partial \left<u\right>}{\partial x} & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right )& \frac{\partial \left<v\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)& \frac{\partial \left<w\right>}{\partial z} \end{bmatrix}. Sij=xu21(yu+xv)21(zu+xw)21(yu+xv)yv21(zv+yw)21(zu+xw)21(zv+yw)zw.湍动能输运方程的另一种形式为: ∂ k ∂ t + ∇ ⋅ ( k < u > ) = ∇ ⋅ ( − < p ′ u ′ > ρ + 2 ν < u ′ s i j ′ > − 1 2 < u i ′ ⋅ u i ′ u j ′ > ) − 2 ν < s i j ′ ⋅ s i j ′ > − < u i ′ u j ′ > ⋅ S i j \frac{\partial k}{\partial t} +\nabla \cdot { ( k \mathbf{ \left<u\right>})}= \nabla \cdot \left( -\frac{\left<p' \mathbf u'\right>}{\rho} +2\nu \left<{\mathbf u' s'_{ij}} \right> -\frac{1}{2} \left<{u'_i \cdot u_i^{\prime}u_j^{\prime}}\right>\right) -2\nu \left<{s'_{ij}\cdot s'_{ij} }\right> -\left<{u_i^{\prime}u_j^{\prime}}\right>\cdot S_{ij} tk+(ku)=(ρpu+2νusij21uiuiuj)2νsijsijuiujSij下面证明上式与式 ( 1 ) (1) (1)是一致的:

  • (1) ∇ ⋅ ( k < u > ) = < u k > ⋅ ∂ k ∂ x k \nabla \cdot { ( k \mathbf{ \left<u\right>})}=\left<u_k\right>\cdot\frac{\partial k}{\partial x_k} (ku)=ukxkk ∇ ⋅ ( k < u > ) = k ∇ ⋅ < u > + < u > ⋅ ∇ k = < u > ⋅ ∇ k = [ u v w ] ⋅ [ ∂ k ∂ x ∂ k ∂ y ∂ k ∂ z ] = < u k > ⋅ ∂ k ∂ x k \begin{aligned} \nabla \cdot { ( k \mathbf{ \left<u\right>})} &=k\nabla\cdot\left<\mathbf u\right> +\left<\mathbf u\right>\cdot\nabla k\\ &=\left<\mathbf u\right>\cdot\nabla k\\ &=\begin{bmatrix} u & v & w \end{bmatrix}\cdot\begin{bmatrix} \frac{\partial k}{\partial x} & \frac{\partial k}{\partial y} & \frac{\partial k}{\partial z} \end{bmatrix}\\ &=\left<u_k\right>\cdot\frac{\partial k}{\partial x_k} \end{aligned} (ku)=ku+uk=uk=[uvw][xkykzk]=ukxkk

  • (2) − ∇ ⋅ < p ′ u ′ > ρ = − ∂ ∂ x k < p ′ u k ′ > ρ -\nabla \cdot \frac{\left<p' \mathbf u'\right>}{\rho}=-\frac{\partial}{\partial x_k} \frac{\left<p'u_k'\right>}{\rho} ρpu=xkρpuk − ∇ ⋅ < p ′ u ′ > ρ = − [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ < p ′ u ′ > ρ < p ′ v ′ > ρ < p ′ w ′ > ρ ] = − ∂ ∂ x k < p ′ u k ′ > ρ \begin{aligned} -\nabla \cdot \frac{\left<p' \mathbf u'\right>}{\rho}&= -\begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \end{bmatrix}\cdot \begin{bmatrix} \frac{\left<p' u'\right>}{\rho} & \frac{\left<p' v'\right>}{\rho} & \frac{\left<p' w'\right>}{\rho} \end{bmatrix}\\ &=-\frac{\partial}{\partial x_k} \frac{\left<p'u_k'\right>}{\rho} \end{aligned} ρpu=[xyz][ρpuρpvρpw]=xkρpuk

  • (3) − ∇ ⋅ 1 2 < u i ′ ⋅ u i ′ u j ′ > = − ∂ ∂ x k < k u k ′ > -\nabla \cdot \frac{1}{2} \left<{u'_i \cdot u_i^{\prime}u_j^{\prime}}\right>= -\frac{\partial}{\partial x_k}\left<ku_k'\right> 21uiuiuj=xkkuk
    − ∇ ⋅ 1 2 < u i ′ ⋅ u i ′ u j ′ > = − ∇ ⋅ < k ′ u j ′ > = − ∂ ∂ x k < k ′ u k ′ > \begin{aligned} -\nabla \cdot \frac{1}{2} \left<{u'_i \cdot u_i^{\prime}u_j^{\prime}}\right>&= -\nabla \cdot \left<{k'u_j^{\prime}}\right>\\&= -\frac{\partial}{\partial x_k}\left<k'u_k'\right> \end{aligned} 21uiuiuj=kuj=xkkuk

  • (4) − < u i ′ u j ′ > ⋅ S i j = − < u i ′ u k ′ > ∂ < u i > ∂ x k -\left<{u_i^{\prime}u_j^{\prime}}\right>\cdot S_{ij}= -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} uiujSij=uiukxkui − < u i ′ u j ′ > ⋅ S i j = − [ < u ′ u ′ > < u ′ v ′ > < u ′ w ′ > < v ′ u ′ > < v ′ v ′ > < v ′ w ′ > < w ′ u ′ > < w ′ v ′ > < w ′ w ′ > ] ⋅ [ ∂ < u > ∂ x 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) ∂ < v > ∂ y 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) ∂ < w > ∂ z ] = < u ′ u ′ > ∂ < u > ∂ x + < v ′ u ′ > ∂ < v > ∂ x + < w ′ u ′ > ∂ < w > ∂ x + < u ′ v ′ > ∂ < u > ∂ y + < v ′ v ′ > ∂ < v > ∂ y + < w ′ v ′ > ∂ < w > ∂ y + < u ′ w ′ > ∂ < u > ∂ z + < v ′ w ′ > ∂ < v > ∂ z + < w ′ w ′ > ∂ < w > ∂ z = − < u i ′ u k ′ > ∂ < u i > ∂ x k \begin{aligned} -\left<{u_i^{\prime}u_j^{\prime}}\right>\cdot S_{ij}=& -\begin{bmatrix} \left<{u'u'}\right>& \left<{u'v'}\right>& \left<{u'w'}\right>\\ \left<{v'u'}\right>& \left<{v'v'}\right>& \left<{v'w'}\right>\\ \left<{w'u'}\right>& \left<{w'v'}\right>& \left<{w'w'}\right> \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial \left<u\right>}{\partial x} & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right )& \frac{\partial \left<v\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)& \frac{\partial \left<w\right>}{\partial z} \end{bmatrix}\\ =&\left<{u'u'}\right>\frac{\partial \left<u\right>}{\partial x}+ \left<{v'u'}\right>\frac{\partial \left<v\right>}{\partial x}+ \left<{w'u'}\right>\frac{\partial \left<w\right>}{\partial x}+\\& \left<{u'v'}\right>\frac{\partial \left<u\right>}{\partial y}+ \left<{v'v'}\right>\frac{\partial \left<v\right>}{\partial y}+ \left<{w'v'}\right>\frac{\partial \left<w\right>}{\partial y}+\\& \left<{u'w'}\right>\frac{\partial \left<u\right>}{\partial z}+ \left<{v'w'}\right>\frac{\partial \left<v\right>}{\partial z}+ \left<{w'w'}\right>\frac{\partial \left<w\right>}{\partial z}\\=&-\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} \end{aligned} uiujSij===uuvuwuuvvvwvuwvwwwxu21(yu+xv)21(zu+xw)21(yu+xv)yv21(zv+yw)21(zu+xw)21(zv+yw)zwuuxu+vuxv+wuxw+uvyu+vvyv+wvyw+uwzu+vwzv+wwzwuiukxkui

  • (5) 2 ∇ ⋅ < u ′ s i j ′ > − 2 < s i j ′ ⋅ s i j ′ > = ∂ ∂ x k ( ∂ k ∂ x k ) − < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> -2 \left<{s'_{ij}\cdot s'_{ij} }\right>= \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> 2usij2sijsij=xk(xkk)xkuixkui
    u ′ s i j ′ = [ u ′ v ′ w ′ ] [ ∂ u ′ ∂ x 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) ∂ v ′ ∂ y 1 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) ∂ w ′ ∂ z ] = [ u ′ ∂ u ′ ∂ x + v ′ 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) + w ′ 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) u ′ 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) + v ′ ∂ v ′ ∂ y + w ′ 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) u ′ 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) + v ′ 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) + w ′ ∂ w ′ ∂ z ] T . \begin{aligned} \mathbf u' s'_{ij} &=\begin{bmatrix} u'& v' & w' \end{bmatrix}\begin{bmatrix} \frac{\partial u'}{\partial x} & \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)\\ \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right)& \frac{\partial v'}{\partial y} & \frac{1}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)\\ \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)& \frac{\partial w'}{\partial z} \end{bmatrix}\\ &=\begin{bmatrix} u'\frac{\partial u'}{\partial x} + \frac{v'}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right) + \frac{w'}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)\\ \frac{u'}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right)+ v'\frac{\partial v'}{\partial y} + \frac{w'}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)\\ \frac{u'}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)+ \frac{v'}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)+ w'\frac{\partial w'}{\partial z} \end{bmatrix}^T. \end{aligned} usij=[uvw]xu21(yu+xv)21(zu+xw)21(yu+xv)yv21(zv+yw)21(zu+xw)21(zv+yw)zw=uxu+2v(yu+xv)+2w(zu+xw)2u(yu+xv)+vyv+2w(zv+yw)2u(zu+xw)+2v(zv+yw)+wzwT.

2 ∇ ⋅ < u ′ s i j ′ > = 2 [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ < u ′ > ∂ < u ′ > ∂ x + < v ′ > 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) + < w ′ > 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) < u ′ > 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) + < v ′ > ∂ < v ′ > ∂ y + < w ′ > 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) < u ′ > 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) + < v ′ > 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) + < w ′ > ∂ < w ′ > ∂ z ] = 2 ( ∂ < u ′ > ∂ x ) 2 + 2 < u ′ > ∂ 2 < u ′ > ∂ x 2 + ∂ < v ′ > ∂ x ∂ < u ′ > ∂ y + < v ′ > ∂ 2 < u ′ > ∂ y ∂ x + ( ∂ < v ′ > ∂ x ) 2 + < v ′ > ∂ 2 < v ′ > ∂ x 2 + ∂ < w ′ > ∂ x ∂ < u ′ > ∂ z + < w ′ > ∂ 2 < u ′ > ∂ z ∂ x + ( ∂ < w ′ > ∂ x ) 2 + < w ′ > ∂ 2 < w ′ > ∂ x 2 + ( ∂ < u ′ > ∂ y ) 2 + < u ′ > ∂ 2 < u ′ > ∂ y 2 + ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + < u ′ > ∂ 2 < v ′ > ∂ x ∂ y + 2 ( ∂ < v ′ > ∂ y ) 2 + 2 < v ′ > ∂ 2 < v ′ > ∂ y 2 + ∂ < w ′ > ∂ y ∂ < v ′ > ∂ z + < w ′ > ∂ 2 < v ′ > ∂ z ∂ y + ( ∂ < w ′ > ∂ y ) 2 + < w ′ > ∂ 2 < w ′ > ∂ y 2 + ( ∂ < u ′ > ∂ z ) 2 + < u ′ > ∂ 2 < u ′ > ∂ z 2 + ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + < u ′ > ∂ 2 < w ′ > ∂ x ∂ z + ( ∂ < v ′ > ∂ z ) 2 + < v ′ > ∂ 2 < v ′ > ∂ z 2 + ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + < v ′ > ∂ 2 < w ′ > ∂ y ∂ z + 2 ( ∂ < w ′ > ∂ z ) 2 + 2 < w ′ > ∂ 2 < w ′ > ∂ z 2 . \begin{aligned} 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> &= 2\begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \end{bmatrix}\cdot \begin{bmatrix} \left<u'\right>\frac{\partial \left<u'\right>}{\partial x} + \frac{\left<v'\right>}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+ \frac{\partial \left<v'\right>}{\partial x}\right ) + \frac{\left<w'\right>}{2}\left ( \frac{\partial \left<u'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial x} \right )\\ \frac{\left<u'\right>}{2}\left ( \frac{\partial \left<u'\right>}{\partial y}+ \frac{\partial \left<v'\right>}{\partial x} \right )+ \left<v'\right>\frac{\partial \left<v'\right>}{\partial y} + \frac{\left<w'\right>}{2}\left ( \frac{\partial \left<v'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial y} \right )\\ \frac{\left<u'\right>}{2}\left ( \frac{\partial \left<u'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial x} \right ) + \frac{\left<v'\right>}{2}\left ( \frac{\partial \left<v'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial y} \right ) + \left<w'\right>\frac{\partial \left<w'\right>}{\partial z} \end{bmatrix}\\ &=2\left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ 2\left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial x^2}+ \frac{\partial \left<v'\right>}{\partial x}\frac{\partial \left<u'\right>}{\partial y}+ \left<v'\right>\frac{\partial^2 \left<u'\right>}{\partial y\partial x}+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial x^2}+\\& \qquad \frac{\partial \left<w'\right>}{\partial x}\frac{\partial \left<u'\right>}{\partial z}+ \left<w'\right>\frac{\partial^2 \left<u'\right>}{\partial z\partial x}+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial x^2}+\\& \qquad \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial y^2}+ \frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \left<u'\right>\frac{\partial^2 \left<v'\right>}{\partial x\partial y}+ 2\left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ 2\left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+\\& \qquad \frac{\partial \left<w'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial z}+ \left<w'\right>\frac{\partial^2 \left<v'\right>}{\partial z\partial y}+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial y^2}+\\& \qquad \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial z^2}+ \frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \left<u'\right>\frac{\partial^2 \left<w'\right>}{\partial x\partial z}+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial z^2}+\\& \qquad \frac{\partial \left<v'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial y}+ \left<v'\right>\frac{\partial^2 \left<w'\right>}{\partial y\partial z}+ 2\left(\frac{\partial \left<w'\right>}{\partial z}\right)^2+ 2\left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}. \end{aligned} 2usij=2[xyz]uxu+2v(yu+xv)+2w(zu+xw)2u(yu+xv)+vyv+2w(zv+yw)2u(zu+xw)+2v(zv+yw)+wzw=2(xu)2+2ux22u+xvyu+vyx2u+(xv)2+vx22v+xwzu+wzx2u+(xw)2+wx22w+(yu)2+uy22u+yuxv+uxy2v+2(yv)2+2vy22v+ywzv+wzy2v+(yw)2+wy22w+(zu)2+uz22u+zuxw+uxz2w+(zv)2+vz22v+zvyw+vyz2w+2(zw)2+2wz22w.

2 < s i j ′ ⋅ s i j ′ > = 2 [ ∂ < u ′ > ∂ x 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) ∂ < v ′ > ∂ y 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) ∂ < w ′ > ∂ z ] ⋅ [ ∂ < u ′ > ∂ x 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) ∂ < v ′ > ∂ y 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) ∂ < w ′ > ∂ z ] = 2 ( ∂ < u ′ > ∂ x ) 2 + 1 2 ( ∂ < u ′ > ∂ y ) 2 + ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + 1 2 ( ∂ < v ′ > ∂ x ) 2 + 1 2 ( ∂ < u ′ > ∂ z ) 2 + ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + 1 2 ( ∂ < w ′ > ∂ x ) 2 + 1 2 ( ∂ < u ′ > ∂ y ) 2 + ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + 1 2 ( ∂ < v ′ > ∂ x ) 2 + 2 ( ∂ < v ′ > ∂ y ) 2 + 1 2 ( ∂ < v ′ > ∂ z ) 2 + ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + 1 2 ( ∂ < w ′ > ∂ y ) 2 + 1 2 ( ∂ < u ′ > ∂ z ) 2 + ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + 1 2 ( ∂ < w ′ > ∂ x ) 2 + 1 2 ( ∂ < v ′ > ∂ z ) 2 + ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + 1 2 ( ∂ < w ′ > ∂ y ) 2 + 2 ( ∂ < w ′ > ∂ z ) 2 = 2 ( ∂ < u ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ y ) 2 + 2 ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + ( ∂ < v ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ z ) 2 + 2 ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + ( ∂ < w ′ > ∂ x ) 2 + 2 ( ∂ < v ′ > ∂ y ) 2 + ( ∂ < v ′ > ∂ z ) 2 + 2 ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + ( ∂ < w ′ > ∂ y ) 2 + 2 ( ∂ < w ′ > ∂ z ) 2 . \begin{aligned} 2 \left<{s'_{ij}\cdot s'_{ij} }\right>=&2 \begin{bmatrix} \frac{\partial \left<u'\right>}{\partial x}& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{\partial \left<v'\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)& \frac{\partial \left<w'\right>}{\partial z} \end{bmatrix}\cdot\\& \begin{bmatrix} \frac{\partial \left<u'\right>}{\partial x}& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{\partial \left<v'\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)& \frac{\partial \left<w'\right>}{\partial z} \end{bmatrix}\\ =&2\left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+\frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+\\& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ 2\left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \frac{\partial \left<v'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial y}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+\\& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \frac{\partial \left<v'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial y}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+ 2\left(\frac{\partial \left<w'\right>}{\partial z}\right)^2\\=& 2\left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ 2\frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ 2\frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+\\& 2\left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ 2\frac{\partial\left<v'\right>}{\partial z}\frac{\partial\left<w'\right>}{\partial y}+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+\\& 2\left(\frac{\partial \left<w'\right>}{\partial z}\right)^2. \end{aligned} 2sijsij===2xu21(yu+xv)21(zu+xw)21(yu+xv)yv21(zv+yw)21(zu+xw)21(zv+yw)zwxu21(yu+xv)21(zu+xw)21(yu+xv)yv21(zv+yw)21(zu+xw)21(zv+yw)zw2(xu)2+21(yu)2+yuxv+21(xv)2+21(zu)2+zuxw+21(xw)2+21(yu)2+yuxv+21(xv)2+2(yv)2+21(zv)2+zvyw+21(yw)2+21(zu)2+zuxw+21(xw)2+21(zv)2+zvyw+21(yw)2+2(zw)22(xu)2+(yu)2+2yuxv+(xv)2+(zu)2+2zuxw+(xw)2+2(yv)2+(zv)2+2zvyw+(yw)2+2(zw)2.

∂ ∂ x k ( ∂ k ∂ x k ) = ∂ 2 k ∂ x 2 + ∂ 2 k ∂ y 2 + ∂ 2 k ∂ z 2 = < u ′ > ∂ 2 < u ′ > ∂ x 2 + ( ∂ < u ′ > ∂ x ) 2 + < v ′ > ∂ 2 < v ′ > ∂ x 2 + ( ∂ < v ′ > ∂ x ) 2 + < w ′ > ∂ 2 < w ′ > ∂ x 2 + ( ∂ < w ′ > ∂ x ) 2 + < u ′ > ∂ 2 < u ′ > ∂ y 2 + ( ∂ < u ′ > ∂ y ) 2 + < v ′ > ∂ 2 < v ′ > ∂ y 2 + ( ∂ < v ′ > ∂ y ) 2 + < w ′ > ∂ 2 < w ′ > ∂ y 2 + ( ∂ < w ′ > ∂ y ) 2 + < u ′ > ∂ 2 < u ′ > ∂ z 2 + ( ∂ < u ′ > ∂ z ) 2 + < v ′ > ∂ 2 < v ′ > ∂ z 2 + ( ∂ < v ′ > ∂ z ) 2 + < w ′ > ∂ 2 < w ′ > ∂ z 2 + ( ∂ < w ′ > ∂ z ) 2 \begin{aligned} \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)=& \frac{\partial^2 k}{\partial x^2}+ \frac{\partial^2 k}{\partial y^2}+ \frac{\partial^2 k}{\partial z^2}\\=& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial x^2}+ \left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial x^2}+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial x^2}+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2\\&+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial y^2}+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+ \left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial y^2}+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2\\&+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial z^2}+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial z^2}+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}+ \left(\frac{\partial \left<w'\right>}{\partial z}\right)^2 \end{aligned} xk(xkk)==x22k+y22k+z22kux22u+(xu)2+vx22v+(xv)2+wx22w+(xw)2+uy22u+(yu)2+vy22v+(yv)2+wy22w+(yw)2+uz22u+(zu)2+vz22v+(zv)2+wz22w+(zw)2

< ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > = ( ∂ < u ′ > ∂ x ) 2 + ( ∂ < v ′ > ∂ x ) 2 + ( ∂ < w ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ y ) 2 + ( ∂ < v ′ > ∂ y ) 2 + ( ∂ < w ′ > ∂ y ) 2 + ( ∂ < u ′ > ∂ z ) 2 + ( ∂ < v ′ > ∂ z ) 2 + ( ∂ < w ′ > ∂ z ) 2 \begin{aligned} \left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>=& \left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial z}\right)^2 \end{aligned} xkuixkui=(xu)2+(xv)2+(xw)2+(yu)2+(yv)2+(yw)2+(zu)2+(zv)2+(zw)2

∂ ∂ x k ( ∂ k ∂ x k ) − < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > = < u ′ > ∂ 2 < u ′ > ∂ x 2 + < v ′ > ∂ 2 < v ′ > ∂ x 2 + < w ′ > ∂ 2 < w ′ > ∂ x 2 + < u ′ > ∂ 2 < u ′ > ∂ y 2 + < v ′ > ∂ 2 < v ′ > ∂ y 2 + < w ′ > ∂ 2 < w ′ > ∂ y 2 + < u ′ > ∂ 2 < u ′ > ∂ z 2 + < v ′ > ∂ 2 < v ′ > ∂ z 2 + < w ′ > ∂ 2 < w ′ > ∂ z 2 + \begin{aligned} \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>=& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial x^2}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial x^2}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial x^2}+\\& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial y^2}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial y^2}+\\& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial z^2}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial z^2}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}+ \end{aligned} xk(xkk)xkuixkui=ux22u+vx22v+wx22w+uy22u+vy22v+wy22w+uz22u+vz22v+wz22w+

2 ∇ ⋅ < u ′ s i j ′ > − 2 < s i j ′ ⋅ s i j ′ > = ∂ ∂ x k ( ∂ k ∂ x k ) − < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > + < u ′ > ∂ 2 < u ′ > ∂ 2 x + < v ′ > ∂ 2 < u ′ > ∂ x ∂ y + < w ′ > ∂ 2 < u ′ > ∂ z ∂ x + < u ′ > ∂ 2 < v ′ > ∂ x ∂ y + < v ′ > ∂ 2 < v ′ > ∂ 2 y + < w ′ > ∂ 2 < v ′ > ∂ z ∂ y + < u ′ > ∂ 2 < w ′ > ∂ x ∂ z + < v ′ > ∂ 2 < w ′ > ∂ y ∂ z + < w ′ > ∂ 2 < w ′ > ∂ z 2 . \begin{aligned} 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> - 2 \left<{s'_{ij}\cdot s'_{ij} }\right>=& \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>+\\& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial^2 x} + \left<v'\right>\frac{\partial^2 \left<u'\right>}{\partial x\partial y}+ \left<w'\right>\frac{\partial^2 \left<u'\right>}{\partial z\partial x}+\\& \left<u'\right>\frac{\partial^2 \left<v'\right>}{\partial x\partial y}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial^2 y}+ \left<w'\right>\frac{\partial^2 \left<v'\right>}{\partial z\partial y}+\\& \left<u'\right>\frac{\partial^2 \left<w'\right>}{\partial x\partial z}+ \left<v'\right>\frac{\partial^2 \left<w'\right>}{\partial y \partial z}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}. \end{aligned} 2usij2sijsij=xk(xkk)xkuixkui+u2x2u+vxy2u+wzx2u+uxy2v+v2y2v+wzy2v+uxz2w+vyz2w+wz22w.
又因为 < u ′ > ∂ 2 < u ′ > ∂ 2 x + < u ′ > ∂ 2 < v ′ > ∂ x ∂ y + < u ′ > ∂ 2 W ∂ x ∂ z = < u ′ > ∂ ∂ x ( ∂ < u ′ > ∂ x + ∂ < v ′ > ∂ y + ∂ < w ′ > ∂ z ) = < u ′ > ∂ ∂ x ( ∇ ⋅ < u ′ > ) = 0 \begin{aligned} &\left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial^2 x} + \left<u'\right>\frac{\partial^2 \left<v'\right>}{\partial x\partial y}+ \left<u'\right>\frac{\partial^2 W}{\partial x\partial z}\\ =&\left<u'\right>\frac{\partial}{\partial x}\left(\frac{\partial \left<u'\right>}{\partial x}+ \frac{\partial \left<v'\right>}{\partial y}+ \frac{\partial \left<w'\right>}{\partial z}\right )\\ =&\left<u'\right>\frac{\partial}{\partial x}\left(\nabla \cdot \mathbf{ \left<u'\right>}\right )\\ =&0 \end{aligned} ===u2x2u+uxy2v+uxz2Wux(xu+yv+zw)ux(u)0同理 < v ′ > ∂ 2 < u ′ > ∂ x ∂ y + < v ′ > ∂ 2 < v ′ > ∂ y 2 + < v ′ > ∂ 2 < w ′ > ∂ y ∂ z = 0 < w ′ > ∂ 2 < u ′ > ∂ x ∂ z + < w ′ > ∂ 2 < v ′ > ∂ y ∂ z + < w ′ > ∂ 2 < w ′ > ∂ z 2 = 0 \begin{aligned} &\left<v'\right>\frac{\partial^2 \left<u'\right>}{\partial x \partial y} + \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+ \left<v'\right>\frac{\partial^2 \left<w'\right>}{\partial y\partial z}=0\\ &\left<w'\right>\frac{\partial^2 \left<u'\right>}{\partial x \partial z} + \left<w'\right>\frac{\partial^2 \left<v'\right>}{\partial y \partial z}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}=0 \end{aligned} vxy2u+vy22v+vyz2w=0wxz2u+wyz2v+wz22w=0 2 ∇ ⋅ < u ′ s i j ′ > − 2 < s i j ′ ⋅ s i j ′ > = ∂ ∂ x k ( ∂ k ∂ x k ) − < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> - 2 \left<{s'_{ij}\cdot s'_{ij} }\right>= \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> 2usij2sijsij=xk(xkk)xkuixkui所以两式是一致的。

四、湍动能耗散率 ε \varepsilon ε初识

湍动能耗散率 ε \varepsilon ε的定义为: ε = ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \varepsilon=\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> ε=νxkuixkui,其中:
< ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > = ( ∂ < u ′ > ∂ x ) 2 + ( ∂ < v ′ > ∂ x ) 2 + ( ∂ < w ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ y ) 2 + ( ∂ < v ′ > ∂ y ) 2 + ( ∂ < w ′ > ∂ y ) 2 + ( ∂ < u ′ > ∂ z ) 2 + ( ∂ < v ′ > ∂ z ) 2 + ( ∂ < w ′ > ∂ z ) 2 \begin{aligned} \left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>=& \left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial z}\right)^2 \end{aligned} xkuixkui=(xu)2+(xv)2+(xw)2+(yu)2+(yv)2+(yw)2+(zu)2+(zv)2+(zw)2由其展开式可知 < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> xkuixkui恒大于0,故湍动能耗散率 ε > 0 \varepsilon>0 ε>0,因而在湍动能输运方程 ( 1 ) (1) (1) ε \varepsilon ε总是使湍动能减小。

五、参考资料

  • 湍流理论与模拟》第二版.张兆顺、崔桂香、许春晓、黄伟希.

  • An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD (Second Edition). H K Versteeg and W Malalasekera

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值