一、雷诺应力输运方程
雷诺应力输运方程的推导可以参考博主的另一篇博文《雷诺方程、脉动运动方程及雷诺应力输运方程的推导》。为方便查看,现将雷诺应力输运方程给出: ∂ < u i ′ u j ′ > ∂ t + < u k > ∂ < u i ′ u j ′ > ∂ x k = − < u i ′ u k ′ > ∂ < u j > ∂ x k − < u j ′ u k ′ > ∂ < u i > ∂ x k + < p ′ ρ ( ∂ u j ′ ∂ x i + ∂ u i ′ ∂ x j ) > − ∂ ∂ x k ( < p ′ u i ′ > ρ δ j k + < p ′ u j ′ > ρ δ i k + < u i ′ u j ′ u k ′ > − ν ∂ < u i ′ u j ′ > ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u j ′ ∂ x k > \begin{aligned} &\frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k} = -\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} + \left<\frac{p'}{\rho}\left(\frac{\partial u_j'}{\partial x_i}+\frac{\partial u_i'}{\partial x_j}\right)\right>\\& -\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_i'\right>}{\rho}\delta_{jk}+ \frac{\left<p'u_j'\right>}{\rho}\delta_{ik}+ \left<u_i'u_j'u_k'\right>- \nu\frac{\partial \left<u_i'u_j'\right>}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right> \end{aligned} ∂t∂⟨ui′uj′⟩+⟨uk⟩∂xk∂⟨ui′uj′⟩=−⟨ui′uk′⟩∂xk∂⟨uj⟩−⟨uj′uk′⟩∂xk∂⟨ui⟩+⟨ρp′(∂xi∂uj′+∂xj∂ui′)⟩−∂xk∂(ρ⟨p′ui′⟩δjk+ρ⟨p′uj′⟩δik+⟨ui′uj′uk′⟩−ν∂xk∂⟨ui′uj′⟩)−2ν⟨∂xk∂ui′∂xk∂uj′⟩
二、湍动能输运方程
湍动能输运方程可以雷诺应力输运方程推出,将雷诺应力输运方程作张量收缩运算,即将式中的下标 j j j用 i i i替换,得: ∂ < u i ′ u i ′ > ∂ t + < u k > ∂ < u i ′ u i ′ > ∂ x k = − < u i ′ u k ′ > ∂ < u i > ∂ x k − < u i ′ u k ′ > ∂ < u i > ∂ x k + < p ′ ρ ( ∂ u i ′ ∂ x i + ∂ u i ′ ∂ x i ) > − ∂ ∂ x k ( < p ′ u i ′ > ρ δ i k + < p ′ u i ′ > ρ δ i k + < u i ′ u i ′ u k ′ > − ν ∂ < u i ′ u i ′ > ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} &\frac{\partial\left<u_i'u_i'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_i'\right>}{\partial x_k} = -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} + \left<\frac{p'}{\rho}\left(\frac{\partial u_i'}{\partial x_i}+\frac{\partial u_i'}{\partial x_i}\right)\right>\\& -\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_i'\right>}{\rho}\delta_{ik}+ \frac{\left<p'u_i'\right>}{\rho}\delta_{ik}+ \left<u_i'u_i'u_k'\right>- \nu\frac{\partial \left<u_i'u_i'\right>}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned} ∂t∂⟨ui′ui′⟩+⟨uk⟩∂xk∂⟨ui′ui′⟩=−⟨ui′uk′⟩∂xk∂⟨ui⟩−⟨ui′uk′⟩∂xk∂⟨ui⟩+⟨ρp′(∂xi∂ui′+∂xi∂ui′)⟩−∂xk∂(ρ⟨p′ui′⟩δik+ρ⟨p′ui′⟩δik+⟨ui′ui′uk′⟩−ν∂xk∂⟨ui′ui′⟩)−2ν⟨∂xk∂ui′∂xk∂ui′⟩由于 ∂ u i ′ ∂ x i = 0 \frac{\partial u_i'}{\partial x_i}=0 ∂xi∂ui′=0 δ i k = { 1 , i = k 0 , i ≠ k \delta_{ik}=\left \{ \begin{matrix} 1 ,i=k\\ 0,i\ne k \end{matrix}\right. δik={1,i=k0,i=k故由上式得 ∂ < u i ′ u i ′ > ∂ t + < u k > ∂ < u i ′ u i ′ > ∂ x k = − 2 < u i ′ u k ′ > ∂ < u i > ∂ x k − ∂ ∂ x k ( 2 < p ′ u k ′ > ρ + < u i ′ u i ′ u k ′ > − ν ∂ < u i ′ u i ′ > ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} &\frac{\partial\left<u_i'u_i'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_i'\right>}{\partial x_k} = -2\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} \\& -\frac{\partial}{\partial x_k} \left( \frac{2\left<p'u_k'\right>}{\rho}+ \left<u_i'u_i'u_k'\right>- \nu\frac{\partial \left<u_i'u_i'\right>}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned} ∂t∂⟨ui′ui′⟩+⟨uk⟩∂xk∂⟨ui′ui′⟩=−2⟨ui′uk′⟩∂xk∂⟨ui⟩−∂xk∂(ρ2⟨p′uk′⟩+⟨ui′ui′uk′⟩−ν∂xk∂⟨ui′ui′⟩)−2ν⟨∂xk∂ui′∂xk∂ui′⟩将湍动能: k = 1 2 < u i ′ u i ′ > = 1 2 ( < u ′ 2 > + < v ′ 2 > + < w ′ 2 > ) k=\frac{1}{2}\left<u'_iu_i'\right>= \frac{1}{2} \left( \left<u'^2\right> +\left<v'^2\right> +\left<w'^2\right> \right) k=21⟨ui′ui′⟩=21(⟨u′2⟩+⟨v′2⟩+⟨w′2⟩)以及: k ′ = 1 2 u i ′ u i ′ = 1 2 ( u ′ 2 + v ′ 2 + w ′ 2 ) k'=\frac{1}{2}u'_iu_i'= \frac{1}{2} \left( u'^2 +v'^2 +w'^2 \right) k′=21ui′ui′=21(u′2+v′2+w′2)代入上式得: ∂ ( 2 k ) ∂ t + < u k > ∂ ( 2 k ) ∂ x k = − 2 < u i ′ u k ′ > ∂ < u i > ∂ x k − ∂ ∂ x k ( 2 < p ′ u k ′ > ρ + 2 < k ′ u k ′ > − ν ∂ ( 2 k ) ∂ x k ) − 2 ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > \begin{aligned} &\frac{\partial (2k)}{\partial t}+ \left<u_k\right>\frac{\partial(2k)}{\partial x_k} = -2\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} \\& -\frac{\partial}{\partial x_k} \left( \frac{2\left<p'u_k'\right>}{\rho}+ 2\left<k'u_k'\right>- \nu\frac{\partial (2k)}{\partial x_k} \right) -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned} ∂t∂(2k)+⟨uk⟩∂xk∂(2k)=−2⟨ui′uk′⟩∂xk∂⟨ui⟩−∂xk∂(ρ2⟨p′uk′⟩+2⟨k′uk′⟩−ν∂xk∂(2k))−2ν⟨∂xk∂ui′∂xk∂ui′⟩两边除以 2 2 2得湍动能输运方程: ∂ k ∂ t + < u k > ∂ k ∂ x k = − < u i ′ u k ′ > ∂ < u i > ∂ x k − ∂ ∂ x k ( < p ′ u k ′ > ρ + < k ′ u k ′ > − ν ∂ k ∂ x k ) − ν < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > (1) \begin{aligned} &\frac{\partial k}{\partial t}+ \left<u_k\right>\frac{\partial k}{\partial x_k} = -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_k'\right>}{\rho}+ \left<k'u_k'\right>- \nu\frac{\partial k}{\partial x_k} \right) -\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> \end{aligned}\tag{1} ∂t∂k+⟨uk⟩∂xk∂k=−⟨ui′uk′⟩∂xk∂⟨ui⟩−∂xk∂(ρ⟨p′uk′⟩+⟨k′uk′⟩−ν∂xk∂k)−ν⟨∂xk∂ui′∂xk∂ui′⟩(1)
三、湍动能输运方程另一种形式
在介绍湍动能输运方程的另一种形式之前,首先介绍应变率张量的分解: s i j ( t ) = S i j + s i j ′ s_{ij}(t)=S_{ij}+s'_{ij} sij(t)=Sij+sij′其中 S i j S_{ij} Sij可以表示成时间平均的形式 S i j = [ ∂ U ∂ x 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ U ∂ y + ∂ V ∂ x ) ∂ V ∂ y 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) 1 2 ( ∂ U ∂ z + ∂ W ∂ x ) 1 2 ( ∂ V ∂ z + ∂ W ∂ y ) ∂ W ∂ z ] . S_{ij}=\begin{bmatrix} \frac{\partial U}{\partial x} & \frac{1}{2}\left(\frac{\partial U}{\partial y}+\frac{\partial V}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial U}{\partial z}+\frac{\partial W}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial U}{\partial y}+\frac{\partial V}{\partial x}\right )& \frac{\partial V}{\partial y} & \frac{1}{2}\left(\frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial U}{\partial z}+\frac{\partial W}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial V}{\partial z}+\frac{\partial W}{\partial y} \right)& \frac{\partial W}{\partial z} \end{bmatrix}. Sij=⎣⎢⎢⎢⎡∂x∂U21(∂y∂U+∂x∂V)21(∂z∂U+∂x∂W)21(∂y∂U+∂x∂V)∂y∂V21(∂z∂V+∂y∂W)21(∂z∂U+∂x∂W)21(∂z∂V+∂y∂W)∂z∂W⎦⎥⎥⎥⎤. s i j ′ = [ ∂ u ′ ∂ x 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) ∂ v ′ ∂ y 1 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ y ) ∂ w ′ ∂ z ] . s'_{ij}=\begin{bmatrix} \frac{\partial u'}{\partial x} & \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right )& \frac{\partial v'}{\partial y} & \frac{1}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial y} \right)& \frac{\partial w'}{\partial z} \end{bmatrix}. sij′=⎣⎢⎢⎢⎡∂x∂u′21(∂y∂u′+∂x∂v′)21(∂z∂u′+∂x∂w′)21(∂y∂u′+∂x∂v′)∂y∂v′21(∂z∂u′+∂y∂w′)21(∂z∂u′+∂x∂w′)21(∂z∂v′+∂y∂w′)∂z∂w′⎦⎥⎥⎥⎤.另外 S i j S_{ij} Sij还可以表示成系综平均的形式,即 S i j = [ ∂ < u > ∂ x 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) ∂ < v > ∂ y 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) ∂ < w > ∂ z ] . S_{ij}=\begin{bmatrix} \frac{\partial \left<u\right>}{\partial x} & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right )& \frac{\partial \left<v\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)& \frac{\partial \left<w\right>}{\partial z} \end{bmatrix}. Sij=⎣⎢⎢⎢⎡∂x∂⟨u⟩21(∂y∂⟨u⟩+∂x∂⟨v⟩)21(∂z∂⟨u⟩+∂x∂⟨w⟩)21(∂y∂⟨u⟩+∂x∂⟨v⟩)∂y∂⟨v⟩21(∂z∂⟨v⟩+∂y∂⟨w⟩)21(∂z∂⟨u⟩+∂x∂⟨w⟩)21(∂z∂⟨v⟩+∂y∂⟨w⟩)∂z∂⟨w⟩⎦⎥⎥⎥⎤.湍动能输运方程的另一种形式为: ∂ k ∂ t + ∇ ⋅ ( k < u > ) = ∇ ⋅ ( − < p ′ u ′ > ρ + 2 ν < u ′ s i j ′ > − 1 2 < u i ′ ⋅ u i ′ u j ′ > ) − 2 ν < s i j ′ ⋅ s i j ′ > − < u i ′ u j ′ > ⋅ S i j \frac{\partial k}{\partial t} +\nabla \cdot { ( k \mathbf{ \left<u\right>})}= \nabla \cdot \left( -\frac{\left<p' \mathbf u'\right>}{\rho} +2\nu \left<{\mathbf u' s'_{ij}} \right> -\frac{1}{2} \left<{u'_i \cdot u_i^{\prime}u_j^{\prime}}\right>\right) -2\nu \left<{s'_{ij}\cdot s'_{ij} }\right> -\left<{u_i^{\prime}u_j^{\prime}}\right>\cdot S_{ij} ∂t∂k+∇⋅(k⟨u⟩)=∇⋅(−ρ⟨p′u′⟩+2ν⟨u′sij′⟩−21⟨ui′⋅ui′uj′⟩)−2ν⟨sij′⋅sij′⟩−⟨ui′uj′⟩⋅Sij下面证明上式与式 ( 1 ) (1) (1)是一致的:
-
(1) ∇ ⋅ ( k < u > ) = < u k > ⋅ ∂ k ∂ x k \nabla \cdot { ( k \mathbf{ \left<u\right>})}=\left<u_k\right>\cdot\frac{\partial k}{\partial x_k} ∇⋅(k⟨u⟩)=⟨uk⟩⋅∂xk∂k ∇ ⋅ ( k < u > ) = k ∇ ⋅ < u > + < u > ⋅ ∇ k = < u > ⋅ ∇ k = [ u v w ] ⋅ [ ∂ k ∂ x ∂ k ∂ y ∂ k ∂ z ] = < u k > ⋅ ∂ k ∂ x k \begin{aligned} \nabla \cdot { ( k \mathbf{ \left<u\right>})} &=k\nabla\cdot\left<\mathbf u\right> +\left<\mathbf u\right>\cdot\nabla k\\ &=\left<\mathbf u\right>\cdot\nabla k\\ &=\begin{bmatrix} u & v & w \end{bmatrix}\cdot\begin{bmatrix} \frac{\partial k}{\partial x} & \frac{\partial k}{\partial y} & \frac{\partial k}{\partial z} \end{bmatrix}\\ &=\left<u_k\right>\cdot\frac{\partial k}{\partial x_k} \end{aligned} ∇⋅(k⟨u⟩)=k∇⋅⟨u⟩+⟨u⟩⋅∇k=⟨u⟩⋅∇k=[uvw]⋅[∂x∂k∂y∂k∂z∂k]=⟨uk⟩⋅∂xk∂k
-
(2) − ∇ ⋅ < p ′ u ′ > ρ = − ∂ ∂ x k < p ′ u k ′ > ρ -\nabla \cdot \frac{\left<p' \mathbf u'\right>}{\rho}=-\frac{\partial}{\partial x_k} \frac{\left<p'u_k'\right>}{\rho} −∇⋅ρ⟨p′u′⟩=−∂xk∂ρ⟨p′uk′⟩ − ∇ ⋅ < p ′ u ′ > ρ = − [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ < p ′ u ′ > ρ < p ′ v ′ > ρ < p ′ w ′ > ρ ] = − ∂ ∂ x k < p ′ u k ′ > ρ \begin{aligned} -\nabla \cdot \frac{\left<p' \mathbf u'\right>}{\rho}&= -\begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \end{bmatrix}\cdot \begin{bmatrix} \frac{\left<p' u'\right>}{\rho} & \frac{\left<p' v'\right>}{\rho} & \frac{\left<p' w'\right>}{\rho} \end{bmatrix}\\ &=-\frac{\partial}{\partial x_k} \frac{\left<p'u_k'\right>}{\rho} \end{aligned} −∇⋅ρ⟨p′u′⟩=−[∂x∂∂y∂∂z∂]⋅[ρ⟨p′u′⟩ρ⟨p′v′⟩ρ⟨p′w′⟩]=−∂xk∂ρ⟨p′uk′⟩
-
(3) − ∇ ⋅ 1 2 < u i ′ ⋅ u i ′ u j ′ > = − ∂ ∂ x k < k u k ′ > -\nabla \cdot \frac{1}{2} \left<{u'_i \cdot u_i^{\prime}u_j^{\prime}}\right>= -\frac{\partial}{\partial x_k}\left<ku_k'\right> −∇⋅21⟨ui′⋅ui′uj′⟩=−∂xk∂⟨kuk′⟩
− ∇ ⋅ 1 2 < u i ′ ⋅ u i ′ u j ′ > = − ∇ ⋅ < k ′ u j ′ > = − ∂ ∂ x k < k ′ u k ′ > \begin{aligned} -\nabla \cdot \frac{1}{2} \left<{u'_i \cdot u_i^{\prime}u_j^{\prime}}\right>&= -\nabla \cdot \left<{k'u_j^{\prime}}\right>\\&= -\frac{\partial}{\partial x_k}\left<k'u_k'\right> \end{aligned} −∇⋅21⟨ui′⋅ui′uj′⟩=−∇⋅⟨k′uj′⟩=−∂xk∂⟨k′uk′⟩ -
(4) − < u i ′ u j ′ > ⋅ S i j = − < u i ′ u k ′ > ∂ < u i > ∂ x k -\left<{u_i^{\prime}u_j^{\prime}}\right>\cdot S_{ij}= -\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} −⟨ui′uj′⟩⋅Sij=−⟨ui′uk′⟩∂xk∂⟨ui⟩ − < u i ′ u j ′ > ⋅ S i j = − [ < u ′ u ′ > < u ′ v ′ > < u ′ w ′ > < v ′ u ′ > < v ′ v ′ > < v ′ w ′ > < w ′ u ′ > < w ′ v ′ > < w ′ w ′ > ] ⋅ [ ∂ < u > ∂ x 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < u > ∂ y + ∂ < v > ∂ x ) ∂ < v > ∂ y 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) 1 2 ( ∂ < u > ∂ z + ∂ < w > ∂ x ) 1 2 ( ∂ < v > ∂ z + ∂ < w > ∂ y ) ∂ < w > ∂ z ] = < u ′ u ′ > ∂ < u > ∂ x + < v ′ u ′ > ∂ < v > ∂ x + < w ′ u ′ > ∂ < w > ∂ x + < u ′ v ′ > ∂ < u > ∂ y + < v ′ v ′ > ∂ < v > ∂ y + < w ′ v ′ > ∂ < w > ∂ y + < u ′ w ′ > ∂ < u > ∂ z + < v ′ w ′ > ∂ < v > ∂ z + < w ′ w ′ > ∂ < w > ∂ z = − < u i ′ u k ′ > ∂ < u i > ∂ x k \begin{aligned} -\left<{u_i^{\prime}u_j^{\prime}}\right>\cdot S_{ij}=& -\begin{bmatrix} \left<{u'u'}\right>& \left<{u'v'}\right>& \left<{u'w'}\right>\\ \left<{v'u'}\right>& \left<{v'v'}\right>& \left<{v'w'}\right>\\ \left<{w'u'}\right>& \left<{w'v'}\right>& \left<{w'w'}\right> \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial \left<u\right>}{\partial x} & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right ) & \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right )\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial y}+\frac{\partial \left<v\right>}{\partial x}\right )& \frac{\partial \left<v\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)\\ \frac{1}{2}\left(\frac{\partial \left<u\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v\right>}{\partial z}+\frac{\partial \left<w\right>}{\partial y} \right)& \frac{\partial \left<w\right>}{\partial z} \end{bmatrix}\\ =&\left<{u'u'}\right>\frac{\partial \left<u\right>}{\partial x}+ \left<{v'u'}\right>\frac{\partial \left<v\right>}{\partial x}+ \left<{w'u'}\right>\frac{\partial \left<w\right>}{\partial x}+\\& \left<{u'v'}\right>\frac{\partial \left<u\right>}{\partial y}+ \left<{v'v'}\right>\frac{\partial \left<v\right>}{\partial y}+ \left<{w'v'}\right>\frac{\partial \left<w\right>}{\partial y}+\\& \left<{u'w'}\right>\frac{\partial \left<u\right>}{\partial z}+ \left<{v'w'}\right>\frac{\partial \left<v\right>}{\partial z}+ \left<{w'w'}\right>\frac{\partial \left<w\right>}{\partial z}\\=&-\left<u_i'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} \end{aligned} −⟨ui′uj′⟩⋅Sij===−⎣⎡⟨u′u′⟩⟨v′u′⟩⟨w′u′⟩⟨u′v′⟩⟨v′v′⟩⟨w′v′⟩⟨u′w′⟩⟨v′w′⟩⟨w′w′⟩⎦⎤⋅⎣⎢⎢⎢⎡∂x∂⟨u⟩21(∂y∂⟨u⟩+∂x∂⟨v⟩)21(∂z∂⟨u⟩+∂x∂⟨w⟩)21(∂y∂⟨u⟩+∂x∂⟨v⟩)∂y∂⟨v⟩21(∂z∂⟨v⟩+∂y∂⟨w⟩)21(∂z∂⟨u⟩+∂x∂⟨w⟩)21(∂z∂⟨v⟩+∂y∂⟨w⟩)∂z∂⟨w⟩⎦⎥⎥⎥⎤⟨u′u′⟩∂x∂⟨u⟩+⟨v′u′⟩∂x∂⟨v⟩+⟨w′u′⟩∂x∂⟨w⟩+⟨u′v′⟩∂y∂⟨u⟩+⟨v′v′⟩∂y∂⟨v⟩+⟨w′v′⟩∂y∂⟨w⟩+⟨u′w′⟩∂z∂⟨u⟩+⟨v′w′⟩∂z∂⟨v⟩+⟨w′w′⟩∂z∂⟨w⟩−⟨ui′uk′⟩∂xk∂⟨ui⟩
-
(5) 2 ∇ ⋅ < u ′ s i j ′ > − 2 < s i j ′ ⋅ s i j ′ > = ∂ ∂ x k ( ∂ k ∂ x k ) − < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> -2 \left<{s'_{ij}\cdot s'_{ij} }\right>= \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right> 2∇⋅⟨u′sij′⟩−2⟨sij′⋅sij′⟩=∂xk∂(∂xk∂k)−⟨∂xk∂ui′∂xk∂ui′⟩
u ′ s i j ′ = [ u ′ v ′ w ′ ] [ ∂ u ′ ∂ x 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) ∂ v ′ ∂ y 1 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) 1 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) 1 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) ∂ w ′ ∂ z ] = [ u ′ ∂ u ′ ∂ x + v ′ 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) + w ′ 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) u ′ 2 ( ∂ u ′ ∂ y + ∂ v ′ ∂ x ) + v ′ ∂ v ′ ∂ y + w ′ 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) u ′ 2 ( ∂ u ′ ∂ z + ∂ w ′ ∂ x ) + v ′ 2 ( ∂ v ′ ∂ z + ∂ w ′ ∂ y ) + w ′ ∂ w ′ ∂ z ] T . \begin{aligned} \mathbf u' s'_{ij} &=\begin{bmatrix} u'& v' & w' \end{bmatrix}\begin{bmatrix} \frac{\partial u'}{\partial x} & \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)\\ \frac{1}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right)& \frac{\partial v'}{\partial y} & \frac{1}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)\\ \frac{1}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)& \frac{\partial w'}{\partial z} \end{bmatrix}\\ &=\begin{bmatrix} u'\frac{\partial u'}{\partial x} + \frac{v'}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right) + \frac{w'}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)\\ \frac{u'}{2}\left(\frac{\partial u'}{\partial y}+\frac{\partial v'}{\partial x}\right)+ v'\frac{\partial v'}{\partial y} + \frac{w'}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)\\ \frac{u'}{2}\left(\frac{\partial u'}{\partial z}+\frac{\partial w'}{\partial x}\right)+ \frac{v'}{2}\left(\frac{\partial v'}{\partial z}+\frac{\partial w'}{\partial y}\right)+ w'\frac{\partial w'}{\partial z} \end{bmatrix}^T. \end{aligned} u′sij′=[u′v′w′]⎣⎢⎢⎢⎡∂x∂u′21(∂y∂u′+∂x∂v′)21(∂z∂u′+∂x∂w′)21(∂y∂u′+∂x∂v′)∂y∂v′21(∂z∂v′+∂y∂w′)21(∂z∂u′+∂x∂w′)21(∂z∂v′+∂y∂w′)∂z∂w′⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡u′∂x∂u′+2v′(∂y∂u′+∂x∂v′)+2w′(∂z∂u′+∂x∂w′)2u′(∂y∂u′+∂x∂v′)+v′∂y∂v′+2w′(∂z∂v′+∂y∂w′)2u′(∂z∂u′+∂x∂w′)+2v′(∂z∂v′+∂y∂w′)+w′∂z∂w′⎦⎥⎥⎥⎤T.
2 ∇ ⋅ < u ′ s i j ′ > = 2 [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] ⋅ [ < u ′ > ∂ < u ′ > ∂ x + < v ′ > 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) + < w ′ > 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) < u ′ > 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) + < v ′ > ∂ < v ′ > ∂ y + < w ′ > 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) < u ′ > 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) + < v ′ > 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) + < w ′ > ∂ < w ′ > ∂ z ] = 2 ( ∂ < u ′ > ∂ x ) 2 + 2 < u ′ > ∂ 2 < u ′ > ∂ x 2 + ∂ < v ′ > ∂ x ∂ < u ′ > ∂ y + < v ′ > ∂ 2 < u ′ > ∂ y ∂ x + ( ∂ < v ′ > ∂ x ) 2 + < v ′ > ∂ 2 < v ′ > ∂ x 2 + ∂ < w ′ > ∂ x ∂ < u ′ > ∂ z + < w ′ > ∂ 2 < u ′ > ∂ z ∂ x + ( ∂ < w ′ > ∂ x ) 2 + < w ′ > ∂ 2 < w ′ > ∂ x 2 + ( ∂ < u ′ > ∂ y ) 2 + < u ′ > ∂ 2 < u ′ > ∂ y 2 + ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + < u ′ > ∂ 2 < v ′ > ∂ x ∂ y + 2 ( ∂ < v ′ > ∂ y ) 2 + 2 < v ′ > ∂ 2 < v ′ > ∂ y 2 + ∂ < w ′ > ∂ y ∂ < v ′ > ∂ z + < w ′ > ∂ 2 < v ′ > ∂ z ∂ y + ( ∂ < w ′ > ∂ y ) 2 + < w ′ > ∂ 2 < w ′ > ∂ y 2 + ( ∂ < u ′ > ∂ z ) 2 + < u ′ > ∂ 2 < u ′ > ∂ z 2 + ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + < u ′ > ∂ 2 < w ′ > ∂ x ∂ z + ( ∂ < v ′ > ∂ z ) 2 + < v ′ > ∂ 2 < v ′ > ∂ z 2 + ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + < v ′ > ∂ 2 < w ′ > ∂ y ∂ z + 2 ( ∂ < w ′ > ∂ z ) 2 + 2 < w ′ > ∂ 2 < w ′ > ∂ z 2 . \begin{aligned} 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> &= 2\begin{bmatrix} \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \end{bmatrix}\cdot \begin{bmatrix} \left<u'\right>\frac{\partial \left<u'\right>}{\partial x} + \frac{\left<v'\right>}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+ \frac{\partial \left<v'\right>}{\partial x}\right ) + \frac{\left<w'\right>}{2}\left ( \frac{\partial \left<u'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial x} \right )\\ \frac{\left<u'\right>}{2}\left ( \frac{\partial \left<u'\right>}{\partial y}+ \frac{\partial \left<v'\right>}{\partial x} \right )+ \left<v'\right>\frac{\partial \left<v'\right>}{\partial y} + \frac{\left<w'\right>}{2}\left ( \frac{\partial \left<v'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial y} \right )\\ \frac{\left<u'\right>}{2}\left ( \frac{\partial \left<u'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial x} \right ) + \frac{\left<v'\right>}{2}\left ( \frac{\partial \left<v'\right>}{\partial z}+ \frac{\partial \left<w'\right>}{\partial y} \right ) + \left<w'\right>\frac{\partial \left<w'\right>}{\partial z} \end{bmatrix}\\ &=2\left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ 2\left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial x^2}+ \frac{\partial \left<v'\right>}{\partial x}\frac{\partial \left<u'\right>}{\partial y}+ \left<v'\right>\frac{\partial^2 \left<u'\right>}{\partial y\partial x}+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial x^2}+\\& \qquad \frac{\partial \left<w'\right>}{\partial x}\frac{\partial \left<u'\right>}{\partial z}+ \left<w'\right>\frac{\partial^2 \left<u'\right>}{\partial z\partial x}+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial x^2}+\\& \qquad \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial y^2}+ \frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \left<u'\right>\frac{\partial^2 \left<v'\right>}{\partial x\partial y}+ 2\left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ 2\left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+\\& \qquad \frac{\partial \left<w'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial z}+ \left<w'\right>\frac{\partial^2 \left<v'\right>}{\partial z\partial y}+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial y^2}+\\& \qquad \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial z^2}+ \frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \left<u'\right>\frac{\partial^2 \left<w'\right>}{\partial x\partial z}+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial z^2}+\\& \qquad \frac{\partial \left<v'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial y}+ \left<v'\right>\frac{\partial^2 \left<w'\right>}{\partial y\partial z}+ 2\left(\frac{\partial \left<w'\right>}{\partial z}\right)^2+ 2\left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}. \end{aligned} 2∇⋅⟨u′sij′⟩=2[∂x∂∂y∂∂z∂]⋅⎣⎢⎢⎢⎢⎢⎢⎡⟨u′⟩∂x∂⟨u′⟩+2⟨v′⟩(∂y∂⟨u′⟩+∂x∂⟨v′⟩)+2⟨w′⟩(∂z∂⟨u′⟩+∂x∂⟨w′⟩)2⟨u′⟩(∂y∂⟨u′⟩+∂x∂⟨v′⟩)+⟨v′⟩∂y∂⟨v′⟩+2⟨w′⟩(∂z∂⟨v′⟩+∂y∂⟨w′⟩)2⟨u′⟩(∂z∂⟨u′⟩+∂x∂⟨w′⟩)+2⟨v′⟩(∂z∂⟨v′⟩+∂y∂⟨w′⟩)+⟨w′⟩∂z∂⟨w′⟩⎦⎥⎥⎥⎥⎥⎥⎤=2(∂x∂⟨u′⟩)2+2⟨u′⟩∂x2∂2⟨u′⟩+∂x∂⟨v′⟩∂y∂⟨u′⟩+⟨v′⟩∂y∂x∂2⟨u′⟩+(∂x∂⟨v′⟩)2+⟨v′⟩∂x2∂2⟨v′⟩+∂x∂⟨w′⟩∂z∂⟨u′⟩+⟨w′⟩∂z∂x∂2⟨u′⟩+(∂x∂⟨w′⟩)2+⟨w′⟩∂x2∂2⟨w′⟩+(∂y∂⟨u′⟩)2+⟨u′⟩∂y2∂2⟨u′⟩+∂y∂⟨u′⟩∂x∂⟨v′⟩+⟨u′⟩∂x∂y∂2⟨v′⟩+2(∂y∂⟨v′⟩)2+2⟨v′⟩∂y2∂2⟨v′⟩+∂y∂⟨w′⟩∂z∂⟨v′⟩+⟨w′⟩∂z∂y∂2⟨v′⟩+(∂y∂⟨w′⟩)2+⟨w′⟩∂y2∂2⟨w′⟩+(∂z∂⟨u′⟩)2+⟨u′⟩∂z2∂2⟨u′⟩+∂z∂⟨u′⟩∂x∂⟨w′⟩+⟨u′⟩∂x∂z∂2⟨w′⟩+(∂z∂⟨v′⟩)2+⟨v′⟩∂z2∂2⟨v′⟩+∂z∂⟨v′⟩∂y∂⟨w′⟩+⟨v′⟩∂y∂z∂2⟨w′⟩+2(∂z∂⟨w′⟩)2+2⟨w′⟩∂z2∂2⟨w′⟩.
2 < s i j ′ ⋅ s i j ′ > = 2 [ ∂ < u ′ > ∂ x 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) ∂ < v ′ > ∂ y 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) ∂ < w ′ > ∂ z ] ⋅ [ ∂ < u ′ > ∂ x 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < u ′ > ∂ y + ∂ < v ′ > ∂ x ) ∂ < v ′ > ∂ y 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) 1 2 ( ∂ < u ′ > ∂ z + ∂ < w ′ > ∂ x ) 1 2 ( ∂ < v ′ > ∂ z + ∂ < w ′ > ∂ y ) ∂ < w ′ > ∂ z ] = 2 ( ∂ < u ′ > ∂ x ) 2 + 1 2 ( ∂ < u ′ > ∂ y ) 2 + ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + 1 2 ( ∂ < v ′ > ∂ x ) 2 + 1 2 ( ∂ < u ′ > ∂ z ) 2 + ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + 1 2 ( ∂ < w ′ > ∂ x ) 2 + 1 2 ( ∂ < u ′ > ∂ y ) 2 + ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + 1 2 ( ∂ < v ′ > ∂ x ) 2 + 2 ( ∂ < v ′ > ∂ y ) 2 + 1 2 ( ∂ < v ′ > ∂ z ) 2 + ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + 1 2 ( ∂ < w ′ > ∂ y ) 2 + 1 2 ( ∂ < u ′ > ∂ z ) 2 + ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + 1 2 ( ∂ < w ′ > ∂ x ) 2 + 1 2 ( ∂ < v ′ > ∂ z ) 2 + ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + 1 2 ( ∂ < w ′ > ∂ y ) 2 + 2 ( ∂ < w ′ > ∂ z ) 2 = 2 ( ∂ < u ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ y ) 2 + 2 ∂ < u ′ > ∂ y ∂ < v ′ > ∂ x + ( ∂ < v ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ z ) 2 + 2 ∂ < u ′ > ∂ z ∂ < w ′ > ∂ x + ( ∂ < w ′ > ∂ x ) 2 + 2 ( ∂ < v ′ > ∂ y ) 2 + ( ∂ < v ′ > ∂ z ) 2 + 2 ∂ < v ′ > ∂ z ∂ < w ′ > ∂ y + ( ∂ < w ′ > ∂ y ) 2 + 2 ( ∂ < w ′ > ∂ z ) 2 . \begin{aligned} 2 \left<{s'_{ij}\cdot s'_{ij} }\right>=&2 \begin{bmatrix} \frac{\partial \left<u'\right>}{\partial x}& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{\partial \left<v'\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)& \frac{\partial \left<w'\right>}{\partial z} \end{bmatrix}\cdot\\& \begin{bmatrix} \frac{\partial \left<u'\right>}{\partial x}& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}+\frac{\partial \left<v'\right>}{\partial x}\right)& \frac{\partial \left<v'\right>}{\partial y} & \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)\\ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial x}\right)& \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}+\frac{\partial \left<w'\right>}{\partial y}\right)& \frac{\partial \left<w'\right>}{\partial z} \end{bmatrix}\\ =&2\left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+\frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+\\& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ 2\left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \frac{\partial \left<v'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial y}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+\\& \frac{1}{2}\left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+ \frac{1}{2}\left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \frac{\partial \left<v'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial y}+ \frac{1}{2}\left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+ 2\left(\frac{\partial \left<w'\right>}{\partial z}\right)^2\\=& 2\left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ 2\frac{\partial \left<u'\right>}{\partial y}\frac{\partial \left<v'\right>}{\partial x}+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ 2\frac{\partial \left<u'\right>}{\partial z}\frac{\partial \left<w'\right>}{\partial x}+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2+\\& 2\left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ 2\frac{\partial\left<v'\right>}{\partial z}\frac{\partial\left<w'\right>}{\partial y}+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2+\\& 2\left(\frac{\partial \left<w'\right>}{\partial z}\right)^2. \end{aligned} 2⟨sij′⋅sij′⟩===2⎣⎢⎢⎢⎢⎢⎢⎡∂x∂⟨u′⟩21(∂y∂⟨u′⟩+∂x∂⟨v′⟩)21(∂z∂⟨u′⟩+∂x∂⟨w′⟩)21(∂y∂⟨u′⟩+∂x∂⟨v′⟩)∂y∂⟨v′⟩21(∂z∂⟨v′⟩+∂y∂⟨w′⟩)21(∂z∂⟨u′⟩+∂x∂⟨w′⟩)21(∂z∂⟨v′⟩+∂y∂⟨w′⟩)∂z∂⟨w′⟩⎦⎥⎥⎥⎥⎥⎥⎤⋅⎣⎢⎢⎢⎢⎢⎢⎡∂x∂⟨u′⟩21(∂y∂⟨u′⟩+∂x∂⟨v′⟩)21(∂z∂⟨u′⟩+∂x∂⟨w′⟩)21(∂y∂⟨u′⟩+∂x∂⟨v′⟩)∂y∂⟨v′⟩21(∂z∂⟨v′⟩+∂y∂⟨w′⟩)21(∂z∂⟨u′⟩+∂x∂⟨w′⟩)21(∂z∂⟨v′⟩+∂y∂⟨w′⟩)∂z∂⟨w′⟩⎦⎥⎥⎥⎥⎥⎥⎤2(∂x∂⟨u′⟩)2+21(∂y∂⟨u′⟩)2+∂y∂⟨u′⟩∂x∂⟨v′⟩+21(∂x∂⟨v′⟩)2+21(∂z∂⟨u′⟩)2+∂z∂⟨u′⟩∂x∂⟨w′⟩+21(∂x∂⟨w′⟩)2+21(∂y∂⟨u′⟩)2+∂y∂⟨u′⟩∂x∂⟨v′⟩+21(∂x∂⟨v′⟩)2+2(∂y∂⟨v′⟩)2+21(∂z∂⟨v′⟩)2+∂z∂⟨v′⟩∂y∂⟨w′⟩+21(∂y∂⟨w′⟩)2+21(∂z∂⟨u′⟩)2+∂z∂⟨u′⟩∂x∂⟨w′⟩+21(∂x∂⟨w′⟩)2+21(∂z∂⟨v′⟩)2+∂z∂⟨v′⟩∂y∂⟨w′⟩+21(∂y∂⟨w′⟩)2+2(∂z∂⟨w′⟩)22(∂x∂⟨u′⟩)2+(∂y∂⟨u′⟩)2+2∂y∂⟨u′⟩∂x∂⟨v′⟩+(∂x∂⟨v′⟩)2+(∂z∂⟨u′⟩)2+2∂z∂⟨u′⟩∂x∂⟨w′⟩+(∂x∂⟨w′⟩)2+2(∂y∂⟨v′⟩)2+(∂z∂⟨v′⟩)2+2∂z∂⟨v′⟩∂y∂⟨w′⟩+(∂y∂⟨w′⟩)2+2(∂z∂⟨w′⟩)2.
∂ ∂ x k ( ∂ k ∂ x k ) = ∂ 2 k ∂ x 2 + ∂ 2 k ∂ y 2 + ∂ 2 k ∂ z 2 = < u ′ > ∂ 2 < u ′ > ∂ x 2 + ( ∂ < u ′ > ∂ x ) 2 + < v ′ > ∂ 2 < v ′ > ∂ x 2 + ( ∂ < v ′ > ∂ x ) 2 + < w ′ > ∂ 2 < w ′ > ∂ x 2 + ( ∂ < w ′ > ∂ x ) 2 + < u ′ > ∂ 2 < u ′ > ∂ y 2 + ( ∂ < u ′ > ∂ y ) 2 + < v ′ > ∂ 2 < v ′ > ∂ y 2 + ( ∂ < v ′ > ∂ y ) 2 + < w ′ > ∂ 2 < w ′ > ∂ y 2 + ( ∂ < w ′ > ∂ y ) 2 + < u ′ > ∂ 2 < u ′ > ∂ z 2 + ( ∂ < u ′ > ∂ z ) 2 + < v ′ > ∂ 2 < v ′ > ∂ z 2 + ( ∂ < v ′ > ∂ z ) 2 + < w ′ > ∂ 2 < w ′ > ∂ z 2 + ( ∂ < w ′ > ∂ z ) 2 \begin{aligned} \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)=& \frac{\partial^2 k}{\partial x^2}+ \frac{\partial^2 k}{\partial y^2}+ \frac{\partial^2 k}{\partial z^2}\\=& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial x^2}+ \left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial x^2}+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial x^2}+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2\\&+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial y^2}+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+ \left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial y^2}+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2\\&+ \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial z^2}+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial z^2}+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}+ \left(\frac{\partial \left<w'\right>}{\partial z}\right)^2 \end{aligned} ∂xk∂(∂xk∂k)==∂x2∂2k+∂y2∂2k+∂z2∂2k⟨u′⟩∂x2∂2⟨u′⟩+(∂x∂⟨u′⟩)2+⟨v′⟩∂x2∂2⟨v′⟩+(∂x∂⟨v′⟩)2+⟨w′⟩∂x2∂2⟨w′⟩+(∂x∂⟨w′⟩)2+⟨u′⟩∂y2∂2⟨u′⟩+(∂y∂⟨u′⟩)2+⟨v′⟩∂y2∂2⟨v′⟩+(∂y∂⟨v′⟩)2+⟨w′⟩∂y2∂2⟨w′⟩+(∂y∂⟨w′⟩)2+⟨u′⟩∂z2∂2⟨u′⟩+(∂z∂⟨u′⟩)2+⟨v′⟩∂z2∂2⟨v′⟩+(∂z∂⟨v′⟩)2+⟨w′⟩∂z2∂2⟨w′⟩+(∂z∂⟨w′⟩)2
< ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > = ( ∂ < u ′ > ∂ x ) 2 + ( ∂ < v ′ > ∂ x ) 2 + ( ∂ < w ′ > ∂ x ) 2 + ( ∂ < u ′ > ∂ y ) 2 + ( ∂ < v ′ > ∂ y ) 2 + ( ∂ < w ′ > ∂ y ) 2 + ( ∂ < u ′ > ∂ z ) 2 + ( ∂ < v ′ > ∂ z ) 2 + ( ∂ < w ′ > ∂ z ) 2 \begin{aligned} \left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>=& \left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial z}\right)^2 \end{aligned} ⟨∂xk∂ui′∂xk∂ui′⟩=(∂x∂⟨u′⟩)2+(∂x∂⟨v′⟩)2+(∂x∂⟨w′⟩)2+(∂y∂⟨u′⟩)2+(∂y∂⟨v′⟩)2+(∂y∂⟨w′⟩)2+(∂z∂⟨u′⟩)2+(∂z∂⟨v′⟩)2+(∂z∂⟨w′⟩)2故
∂ ∂ x k ( ∂ k ∂ x k ) − < ∂ u i ′ ∂ x k ∂ u i ′ ∂ x k > = < u ′ > ∂ 2 < u ′ > ∂ x 2 + < v ′ > ∂ 2 < v ′ > ∂ x 2 + < w ′ > ∂ 2 < w ′ > ∂ x 2 + < u ′ > ∂ 2 < u ′ > ∂ y 2 + < v ′ > ∂ 2 < v ′ > ∂ y 2 + < w ′ > ∂ 2 < w ′ > ∂ y 2 + < u ′ > ∂ 2 < u ′ > ∂ z 2 + < v ′ > ∂ 2 < v ′ > ∂ z 2 + < w ′ > ∂ 2 < w ′ > ∂ z 2 + \begin{aligned} \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>=& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial x^2}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial x^2}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial x^2}+\\& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial y^2}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial y^2}+\\& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial z^2}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial z^2}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}+ \end{aligned} ∂xk∂(∂xk∂k)−⟨∂xk∂ui′∂xk∂ui′⟩=⟨u′⟩∂x2∂2⟨u′⟩+⟨v′⟩∂x2∂2⟨v′⟩+⟨w′⟩∂x2∂2⟨w′⟩+⟨u′⟩∂y2∂2⟨u′⟩+⟨v′⟩∂y2∂2⟨v′⟩+⟨w′⟩∂y2∂2⟨w′⟩+⟨u′⟩∂z2∂2⟨u′⟩+⟨v′⟩∂z2∂2⟨v′⟩+⟨w′⟩∂z2∂2⟨w′⟩+
2
∇
⋅
<
u
′
s
i
j
′
>
−
2
<
s
i
j
′
⋅
s
i
j
′
>
=
∂
∂
x
k
(
∂
k
∂
x
k
)
−
<
∂
u
i
′
∂
x
k
∂
u
i
′
∂
x
k
>
+
<
u
′
>
∂
2
<
u
′
>
∂
2
x
+
<
v
′
>
∂
2
<
u
′
>
∂
x
∂
y
+
<
w
′
>
∂
2
<
u
′
>
∂
z
∂
x
+
<
u
′
>
∂
2
<
v
′
>
∂
x
∂
y
+
<
v
′
>
∂
2
<
v
′
>
∂
2
y
+
<
w
′
>
∂
2
<
v
′
>
∂
z
∂
y
+
<
u
′
>
∂
2
<
w
′
>
∂
x
∂
z
+
<
v
′
>
∂
2
<
w
′
>
∂
y
∂
z
+
<
w
′
>
∂
2
<
w
′
>
∂
z
2
.
\begin{aligned} 2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> - 2 \left<{s'_{ij}\cdot s'_{ij} }\right>=& \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>+\\& \left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial^2 x} + \left<v'\right>\frac{\partial^2 \left<u'\right>}{\partial x\partial y}+ \left<w'\right>\frac{\partial^2 \left<u'\right>}{\partial z\partial x}+\\& \left<u'\right>\frac{\partial^2 \left<v'\right>}{\partial x\partial y}+ \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial^2 y}+ \left<w'\right>\frac{\partial^2 \left<v'\right>}{\partial z\partial y}+\\& \left<u'\right>\frac{\partial^2 \left<w'\right>}{\partial x\partial z}+ \left<v'\right>\frac{\partial^2 \left<w'\right>}{\partial y \partial z}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}. \end{aligned}
2∇⋅⟨u′sij′⟩−2⟨sij′⋅sij′⟩=∂xk∂(∂xk∂k)−⟨∂xk∂ui′∂xk∂ui′⟩+⟨u′⟩∂2x∂2⟨u′⟩+⟨v′⟩∂x∂y∂2⟨u′⟩+⟨w′⟩∂z∂x∂2⟨u′⟩+⟨u′⟩∂x∂y∂2⟨v′⟩+⟨v′⟩∂2y∂2⟨v′⟩+⟨w′⟩∂z∂y∂2⟨v′⟩+⟨u′⟩∂x∂z∂2⟨w′⟩+⟨v′⟩∂y∂z∂2⟨w′⟩+⟨w′⟩∂z2∂2⟨w′⟩.
又因为
<
u
′
>
∂
2
<
u
′
>
∂
2
x
+
<
u
′
>
∂
2
<
v
′
>
∂
x
∂
y
+
<
u
′
>
∂
2
W
∂
x
∂
z
=
<
u
′
>
∂
∂
x
(
∂
<
u
′
>
∂
x
+
∂
<
v
′
>
∂
y
+
∂
<
w
′
>
∂
z
)
=
<
u
′
>
∂
∂
x
(
∇
⋅
<
u
′
>
)
=
0
\begin{aligned} &\left<u'\right>\frac{\partial^2 \left<u'\right>}{\partial^2 x} + \left<u'\right>\frac{\partial^2 \left<v'\right>}{\partial x\partial y}+ \left<u'\right>\frac{\partial^2 W}{\partial x\partial z}\\ =&\left<u'\right>\frac{\partial}{\partial x}\left(\frac{\partial \left<u'\right>}{\partial x}+ \frac{\partial \left<v'\right>}{\partial y}+ \frac{\partial \left<w'\right>}{\partial z}\right )\\ =&\left<u'\right>\frac{\partial}{\partial x}\left(\nabla \cdot \mathbf{ \left<u'\right>}\right )\\ =&0 \end{aligned}
===⟨u′⟩∂2x∂2⟨u′⟩+⟨u′⟩∂x∂y∂2⟨v′⟩+⟨u′⟩∂x∂z∂2W⟨u′⟩∂x∂(∂x∂⟨u′⟩+∂y∂⟨v′⟩+∂z∂⟨w′⟩)⟨u′⟩∂x∂(∇⋅⟨u′⟩)0同理
<
v
′
>
∂
2
<
u
′
>
∂
x
∂
y
+
<
v
′
>
∂
2
<
v
′
>
∂
y
2
+
<
v
′
>
∂
2
<
w
′
>
∂
y
∂
z
=
0
<
w
′
>
∂
2
<
u
′
>
∂
x
∂
z
+
<
w
′
>
∂
2
<
v
′
>
∂
y
∂
z
+
<
w
′
>
∂
2
<
w
′
>
∂
z
2
=
0
\begin{aligned} &\left<v'\right>\frac{\partial^2 \left<u'\right>}{\partial x \partial y} + \left<v'\right>\frac{\partial^2 \left<v'\right>}{\partial y^2}+ \left<v'\right>\frac{\partial^2 \left<w'\right>}{\partial y\partial z}=0\\ &\left<w'\right>\frac{\partial^2 \left<u'\right>}{\partial x \partial z} + \left<w'\right>\frac{\partial^2 \left<v'\right>}{\partial y \partial z}+ \left<w'\right>\frac{\partial^2 \left<w'\right>}{\partial z^2}=0 \end{aligned}
⟨v′⟩∂x∂y∂2⟨u′⟩+⟨v′⟩∂y2∂2⟨v′⟩+⟨v′⟩∂y∂z∂2⟨w′⟩=0⟨w′⟩∂x∂z∂2⟨u′⟩+⟨w′⟩∂y∂z∂2⟨v′⟩+⟨w′⟩∂z2∂2⟨w′⟩=0故
2
∇
⋅
<
u
′
s
i
j
′
>
−
2
<
s
i
j
′
⋅
s
i
j
′
>
=
∂
∂
x
k
(
∂
k
∂
x
k
)
−
<
∂
u
i
′
∂
x
k
∂
u
i
′
∂
x
k
>
2\nabla\cdot\left<{\mathbf u' s'_{ij}} \right> - 2 \left<{s'_{ij}\cdot s'_{ij} }\right>= \frac{\partial}{\partial x_k}\left(\frac{\partial k}{\partial x_k}\right)-\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>
2∇⋅⟨u′sij′⟩−2⟨sij′⋅sij′⟩=∂xk∂(∂xk∂k)−⟨∂xk∂ui′∂xk∂ui′⟩所以两式是一致的。
四、湍动能耗散率 ε \varepsilon ε初识
湍动能耗散率
ε
\varepsilon
ε的定义为:
ε
=
ν
<
∂
u
i
′
∂
x
k
∂
u
i
′
∂
x
k
>
\varepsilon=\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>
ε=ν⟨∂xk∂ui′∂xk∂ui′⟩,其中:
<
∂
u
i
′
∂
x
k
∂
u
i
′
∂
x
k
>
=
(
∂
<
u
′
>
∂
x
)
2
+
(
∂
<
v
′
>
∂
x
)
2
+
(
∂
<
w
′
>
∂
x
)
2
+
(
∂
<
u
′
>
∂
y
)
2
+
(
∂
<
v
′
>
∂
y
)
2
+
(
∂
<
w
′
>
∂
y
)
2
+
(
∂
<
u
′
>
∂
z
)
2
+
(
∂
<
v
′
>
∂
z
)
2
+
(
∂
<
w
′
>
∂
z
)
2
\begin{aligned} \left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>=& \left(\frac{\partial \left<u'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial x}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial x}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial y}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial y}\right)^2\\&+ \left(\frac{\partial \left<u'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<v'\right>}{\partial z}\right)^2+ \left(\frac{\partial \left<w'\right>}{\partial z}\right)^2 \end{aligned}
⟨∂xk∂ui′∂xk∂ui′⟩=(∂x∂⟨u′⟩)2+(∂x∂⟨v′⟩)2+(∂x∂⟨w′⟩)2+(∂y∂⟨u′⟩)2+(∂y∂⟨v′⟩)2+(∂y∂⟨w′⟩)2+(∂z∂⟨u′⟩)2+(∂z∂⟨v′⟩)2+(∂z∂⟨w′⟩)2由其展开式可知
<
∂
u
i
′
∂
x
k
∂
u
i
′
∂
x
k
>
\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}\right>
⟨∂xk∂ui′∂xk∂ui′⟩恒大于0,故湍动能耗散率
ε
>
0
\varepsilon>0
ε>0,因而在湍动能输运方程
(
1
)
(1)
(1)中
ε
\varepsilon
ε总是使湍动能减小。
五、参考资料
-
《湍流理论与模拟》第二版.张兆顺、崔桂香、许春晓、黄伟希.
-
An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD (Second Edition). H K Versteeg and W Malalasekera