【线性代数】P8 逆矩阵&矩阵方程以及逆矩阵的性质

逆矩阵的定义

A为n阶方阵,存在n阶方阵B,使得AB=BA=E,则A的逆矩阵A-1=B,且可证矩阵的逆唯一。

定理: A可逆的充分必要条件是|A|≠0,则:
在这里插入图片描述


求逆矩阵的方法

  1. 伴随矩阵法
  2. 初等变换法

伴随矩阵法

e.g. 通过伴随矩阵求逆矩阵
在这里插入图片描述
解:
第一步:求A的行列式的值不为0:
在这里插入图片描述
第二步:求代数余子式
在这里插入图片描述
第三步:求伴随矩阵
在这里插入图片描述
第四步:求逆矩阵
在这里插入图片描述


矩阵方程&初等变换法

e.g. 矩阵方程:求x
在这里插入图片描述
在这里插入图片描述
矩阵初等运算的四点注意事项
1)提取出公因子时候要注意提取的方向;
2)A-2不可以,矩阵要与矩阵做加减,所以为A-2E;
3)矩阵永远不要放在分母位置上;
4)一定要先判定可逆,才可以同时左右乘以一个矩阵的逆。
5)待定法可以考虑电脑做。


逆矩阵的性质

A可逆,那么A的逆也可逆,且A逆的逆为A。

在这里插入图片描述

若A和B都可逆,那么AB也可逆,且(AB)的逆为B逆A逆。

在这里插入图片描述

A可逆,那么A的转置也可逆,且A转置的逆等于A逆的转置

在这里插入图片描述

k≠0,(kA)的逆等于1/k乘以A的逆

在这里插入图片描述

A可逆,那么A逆的行列式等于A行列式的逆

在这里插入图片描述

A可逆,A的伴随矩阵也可逆,且A伴随矩阵的逆等于A的行列式分之一乘以A

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脚踏实地的大梦想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值