鲁棒控制数学基础与相关概念系列A(一)-线性空间

鲁棒控制中的矩阵知识(一)—线性空间

在鲁棒控制中,我们常常需要利用一些矩阵论的相关知识。下面对一些常用的定理、定义以及引理进行相关的描述。以此帮助大家在日后的的研究工作当中,可以直接使用。

线性空间

n向量空间中

        K n = { α = ( a 1 , a 2 , a 3 , ⋯   , a n ) ∣ a i ∈ R   或   a i ∈ C , i = 1 , 2 , 3 , ⋯   , n }         ( 1 ) \:\:\:\:\:\:\:K^n = \left\{\alpha=(a_1,a_2, a_3, \cdots,a_n) | a_i \in\R \,或 \, a_i \in C ,i=1,2,3,\cdots,n\right\}\:\:\:\:\:\:\:(1) Kn={α=(a1,a2,a3,,an)aiRaiC,i=1,2,3,,n}(1)

中,向量 α \alpha α是有序数组,且对向量的假发以及数与向量乘法是封闭的,即对上述数组中任意元素进行计算都仍属于 K n K^n Kn中的向量,放宽假设,我们称 K n K^n Kn为相应数域的线性空间。

由上面线性空间的定义容易知道,有限个向量组成的集合,总不能满足加法以及数乘运算的封闭性,所以除了只有有一个零向量构成的零空间外,一般线性空间都是无穷多个向量。由此引入线性相关的概念:

如果 x 1 , x 2 , ⋯   , x r ( r ≥ 1 ) x_1,x_2,\cdots,x_r(r\geq1) x1,x2,,xr(r1)为线性空间V中一组向量, k 1 , k 2 , ⋯   , k r k_1,k_2,\cdots,k_r k1,k2,,kr是实数 R R R或者复数 C C C(这个由向量的性质决定)那么向量

         x = k 1 x 1 + k 2 x 2 + ⋯ + k r x r         ( 2 ) \:\:\:\:\:\:\:\:x=k_1x_1+k_2x_2+\cdots+k_rx_r\:\:\:\:\:\:\:(2) x=k1x1+k2x2++krxr(2)

称为向量 x 1 , x 2 , ⋯   , x r x_1,x_2,\cdots,x_r x1,x2,,xr的一个线性组合。如果公式(2)中的 k i , i = 1 , 2 , ⋯   , r k_i,i=1,2,\cdots,r ki,i=1,2,,r不全为零,且使

        ∑ i = 1 n k i x i = 0          ( 3 ) \:\:\:\:\:\:\: \sum_{i=1}^n k_ix_i=0\:\:\:\:\:\:\:\:(3) i=1nkixi=0(3)

则称向量 x 1 , x 2 , ⋯   , x r x_1,x_2,\cdots,x_r x1,x2,,xr线性相关,否则就成为线性无关。也就是说想让公式(3)成立,但只能让其中的所有 k i = 0 , i = 1 , 2 , ⋯   , r k_i=0,i=1,2,\cdots,r ki=0,i=1,2,,r才可以的话,我们就称为这个线性空间所构成的向量组是线性无关的,否则就是线性相关。我们换一个思路,对于公式(3)如果是线性无关的,那么我们可以认为这个方程是有唯一解的,且这个唯一解是 k i = 0 , i = 1 , 2 , ⋯   , r k_i=0,i=1,2,\cdots,r ki=0,i=1,2,,r

关于线性相关与线性无关有下列命题成立。
命题1 : 当 r ≥ 2 r\geq2 r2时,线性空间 V V V中的向量组 x i , i = 1 , 2 , ⋯   , r x_i,i=1,2,\cdots,r xi,i=1,2,,r线性相关的充要条件是其中至少有一个向量可由向量组中其余向量线性表示;而线性无关的充要条件则是其中每一个向量都不能由向量组中的其他向量来线性表示。
命题2 : 若线性空间 V V V某向量组线性无关,则其任一子向量也线性无关。
定义1 : 设 V V V是数域 P P P上的线性空间, x 1 , x 2 , ⋯   , x n ( n ≥ 1 ) x_1,x_2,\cdots,x_n(n\geq1) x1,x2,,xn(n1)是属于 V V V的任意 n n n个向量,如果它满足:
                ( 1 )    x 1 , x 2 , x 3 , ⋯   , x n \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(1)\:\:x_1,x_2,x_3,\cdots,x_n (1)x1,x2,x3,,xn线性无关。
                ( 2 )    V \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(2)\:\:V (2)V中任意向量 x x x均可由 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn来线性表示;
则称 x 1 , x 2 , ⋯   , x n ( n ≥ 1 ) x_1,x_2,\cdots,x_n(n\geq1) x1,x2,,xn(n1) V V V的一组基,并称其为基向量 V V V n n n维线性空间
(基只不过是 V V V中的最大线性无关组而已)。

对于上面的一些描述,我们大概理解了一下什么是线性空间。下面对线性子空间进行描述。

线性子空间

定义2 : 设 V 1 V_1 V1是数域 P P P上线性空间 V V V的一个子集,且这个子集对 V V V已有的运算也构成线性空间,则称 V 1 V_1 V1 V V V的线性子空间,简称子空间,记为 V 1 ⊆ V V_1\subseteq V V1V,当 V 1 ≠ V V_1\neq V V1=V,记为 V 1 ⊂ V V1 \subset V V1V

容易看出,每个线性空间至少有两个子空间,一个是它自身,另一个是仅由零空间所构成的子集合。这两个子空间成为平凡子空间,而其他的子空间成为非平凡子空间。

在有限维线性空间 V V V中,任何一个子空间 V 1 V_1 V1是有限维的,令 x 1 , x 2 , ⋯   , x m ( n ≥ m ) x_1,x_2,\cdots,x_m(n\geq m) x1,x2,,xm(nm) V 1 V_1 V1的一组基,于是我们称子空间 V 1 V_1 V1是由 x 1 , x 2 , ⋯   , x m ( n ≥ m ) x_1,x_2,\cdots,x_m(n\geq m) x1,x2,,xm(nm)生成的子空间,记为

                s p a n ( x 1 , x 2 , ⋯   , x m ) = V 1 = k 1 x 1 + k 2 x 2 + ⋯ + k m x m      ( 4 ) \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:span(x_1,x_2,\cdots,x_m)=V_1={k_1x_1+k_2x_2+\cdots+k_mx_m}\:\:\:\:(4) span(x1,x2,,xm)=V1=k1x1+k2x2++kmxm(4)

[1]: 《矩阵论》第二版 方保镕 等
[2]: 《鲁棒控制理论》吴敏 等
[3]: 《Essentials of Robust Control》Kemin Zhou etc
[4]: 《现代控制理论》第二版 张嗣瀛 等
[5]: 《现代鲁棒控制理论与应用》梅生伟 等

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值