鲁棒控制数学基础与相关概念系列A(二)---矩阵

矩阵的逆方阵

n n n阶方阵(square matrix)

A = [ a 11 a 12 ⋯ a 1 n a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A=\left[ \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots& \vdots& \ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{matrix} \right] A= a11a11an1a12a12an2a1na1nann

定义1 : 如果 d e t ( A ) ≠ 0 det(A)\neq 0 det(A)=0,则称 n n n阶方阵 A A A为非奇异的。
引理 : 设 A A A B B B各为 n × m n\times m n×m m × n m\times n m×n矩阵,则有

d e t ( A B ) = {   0 n > m d e t ( A ) d e t ( B ) n = m ∑ 1 ≤ j 1 < ⋯ < j n ≤ m d e t A ( 1 2 ⋯ n j 1 j 2 ⋯ j n ) d e t B ( j 1 j 2 ⋯ j n 1 2 ⋯ n ) n < m det(AB) = \begin{cases} \ 0 & n>m \\ det(A)det(B) & n=m \\ \sum_{1\leq j_1 < \cdots <j_n \leq m} detA \begin{pmatrix}1 & 2 & \cdots & n\\j_1 & j_2 & \cdots & j_n \\ \end{pmatrix}detB\begin{pmatrix}j_1 & j_2 & \cdots & j_n \\1 & 2 & \cdots & n\\ \end{pmatrix} & n<m \\ \end{cases} det(AB)=  0det(A)det(B)1j1<<jnmdetA(1j12j2njn)detB(j11j22jnn)n>mn=mn<m

关于逆方阵还有以下性质:

  1. ( A B ) − 1 = B − 1 A − 1 ; (AB)^{-1}=B^{-1}A^{-1}; (AB)1=B1A1;
  2. ( k A ) − 1 = A k , k ∈ R , k ≠ 0 ; (kA)^{-1}=\frac{A}{k},k\in\R,k\neq0; (kA)1=kA,kR,k=0;
  3. ( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1} =(A^{-1})^{T} (AT)1=(A1)T
  4. d e t ( A − 1 ) = 1 d e t ( A ) ≠ 0 det(A^{-1})=\frac{1}{det(A)}\neq0 det(A1)=det(A)1=0

定义2 :在矩阵 A A A中,任取 k k k行和 k k k列 ,位于这些行和列的交点上的 k × k k\times k k×k个元素原来的次序所组成的k阶方阵的行列式,叫做 A A A的一个 k k k阶子式。
定义3 :数域 P P P n × m n\times m n×m非零矩阵 A A A的所有子式中必有一个阶数最大的非零子式,其阶数称为矩阵 A A A的秩,记作 r a n k ( A ) rank(A) rank(A)

由于矩阵 A A A的子式的阶数不超过 A A A的行数及列数,所以 0 ≤ r a n k ( A ) ≤ m i n ( m , n ) 0\leq rank(A) \leq min(m,n) 0rank(A)min(m,n)。如果 A A A不是一个方阵,则称 A A A矩阵为满秩,当且仅当 r a n k ( A ) = m i n ( n , m ) rank(A)=min(n,m) rank(A)=min(n,m)

对于方阵而言, n n n阶方阵 A A A的秩小于 n n n的必要且充分条件为 d e t ( A ) = 0 det(A)=0 det(A)=0,称矩阵 A A A是奇异的,否则为非奇异矩阵。

下面列出一些关于矩阵秩的定理。

定理1 :设矩阵 A , B , C A,B,C A,B,C分别为数域 P P P n × m , p × q , n × q n\times m,p \times q,n\times q n×m,p×q,n×q矩阵,则有
r a n k [ A C 0 B ] ≥ r a n k [ A 0 0 B ] = r a n k ( A ) + r a n k ( B ) \quad\quad\quad rank\left[\begin{matrix}A & C\\0 & B \\\end{matrix}\right] \geq rank\left[\begin{matrix}A & 0\\0 & B \\\end{matrix}\right]=rank(A)+rank(B) rank[A0CB]rank[A00B]=rank(A)+rank(B)
r a n k ( A B ) ≤ m i n ( r a n k ( A ) , r a n k ( B ) ) \quad\quad\quad rank(AB)\leq min(rank(A),rank(B)) rank(AB)min(rank(A),rank(B))

定理2 : 设 A A A n × m n\times m n×m矩阵, P P P n n n阶非奇异方阵, Q Q Q m m m阶非奇异方阵,则有
r a n k ( P A ) = r a n k ( A Q ) = r a n k ( A ) \quad\quad\quad rank(PA)=rank(AQ)=rank(A) rank(PA)=rank(AQ)=rank(A)
换句话说,将非奇异矩阵左乘或者右乘在矩阵上,其秩保持不变。

定理3 : 设矩阵 A A A n × m n\times m n×m矩阵, B B B m × p m\times p m×p矩阵,则有
r a n k ( A ) + r a n k ( B ) ≤ r a n k ( A B ) + m \quad\quad\quad rank(A)+rank(B)\leq rank(AB)+m rank(A)+rank(B)rank(AB)+m

特征值与特征向量

定义4 :设 A A A是数域 P P P上线性空间 V n V^{n} Vn的一个线性变换(矩阵),如果存在 λ ∈ P \lambda\in P λP以及非零向量 x ∈ V n x\in V^{n} xVn,使得 A ( x ) = λ x A(x)=\lambda x A(x)=λx,则称 λ \lambda λ A A A特征值 x x x A A A特征向量

定理4 : 设 n n n阶矩阵有特征值 λ \lambda λ,对应于的特征向量为 x x x,则
1) n n n阶矩阵 μ A \mu A μA有特征值 μ λ \mu \lambda μλ,特征向量不变;
2)矩阵 A m A^{m} Am有特征值 λ m \lambda^{m} λm,对应的特征向量仍然不变;
3)矩阵 A − 1 A^{-1} A1有特征值 λ − 1 \lambda^{-1} λ1,对应的特征值不变;
4)矩阵的转置与原矩阵有相同的特征值和特征向量;

不变子空间

定义5 :设 V n V^{n} Vn是数域上的 n n n维线性空间, A A A V n V^{n} Vn上的线性变换, V 1 V_1 V1 V n V_{n} Vn的子空间,如果对于任何 x ∈ V 1 x\in V_1 xV1恒有 A ( x ) ∈ V 1 A(x)\in V_1 A(x)V1,则说 V 1 V_1 V1是关于 A A A不变子空间

定义6 :设 A A A是线性空间 V n V_{n} Vn上的一个线性变换, V n V^{n} Vn中所有向量的像构成的集合称为线性变换 A A A的值域,记为 R ( A ) = { y = A ( x ) ∣ x ∈ V n } R(A)=\left\{y=A(x)|x\in V^{n}\right\} R(A)={y=A(x)xVn}; 所有被 A A A变成零向量的原像构成的集合成为 A A A的核,记作 N ( A ) = { x ∈ V n ∣ A ( x ) = 0 } N(A)=\left\{ x\in V^{n} | A(x)=0 \right\} N(A)={xVnA(x)=0}

一般 A A A的值域的维数是线性变换 A A A的秩,核的维数称为 A A A的零度,记作 n u l l ( A ) null(A) null(A),满足 r a n k ( A ) + n u l l ( A ) = n rank(A)+null(A)=n rank(A)+null(A)=n

正交性、标准正交与酉矩阵

定义7 :设 x , y x,y x,y为欧氏空间 V V V的两个向量,如果 ( x , y ) = 0 (x,y)=0 (x,y)=0,则说 x x x y y y正交,记为 x ⊥ y x\bot y xy。如果向量 x x x y y y正交,则有 ∣ x + y ∣ 2 = ∣ x ∣ 2 + ∣ y ∣ 2 |x+y|^{2}=|x|^{2}+|y|^{2} x+y2=x2+y2。进而我们可以推广得到更多维数的正交向量组。

定义8 :在欧氏空间 V n V^{n} Vn中,由 n n n个向量构成的正交向量组称为 V n V^{n} Vn的正交基。由单位向量构成的正交基叫做标准正交基。

ϵ 1 , ϵ 2 , ϵ 3 , ⋯   , ϵ n \epsilon_1,\epsilon_2,\epsilon_3,\cdots,\epsilon_n ϵ1,ϵ2,ϵ3,,ϵn为一组标准正交基,更具上面的定义我们可以将其写为:

( ϵ i , ϵ j ) = δ i j = {   1 i = j   0 i ≠ j (\epsilon_i,\epsilon_j)=\delta_{ij}= \begin{cases} \ 1 & i=j\\ \ 0 & i\neq j \\ \end{cases} (ϵi,ϵj)=δij={ 1 0i=ji=j

我们知道关于线性算子,如果设某一个线性算子 ξ \xi ξ满足以下条件之一:
1)对于该算子所处线性空间 V V V中的任一向量 x x x, ( ξ ( x ) , ξ ( x ) ) = ( x , x ) (\xi(x),\xi(x))=(x,x) (ξ(x),ξ(x))=(x,x);
2) V V V的任意一组标准正交基经过线性变换后的基像仍然为 V V V的标准正交基;
3) ξ \xi ξ在任一组标准正交基下的矩阵 U U U,满足 U H U = I U^HU=I UHU=I,称该矩阵为酉矩阵。
则称该线性变换为酉变换。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值